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DISCLAIMER 

The data and information presented in this report are provided to demonstrate current progress 
on the various tasks associated with this project. Values presented herein are preliminary and 
intended for comparison and feedback purposes only as this analysis has not completed the 
peer review process as is standard with NOAA precipitation frequency studies. 
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NOAA Atlas 15 Pilot Technical Report 

 
1. Executive Summary 

The Office of Water Prediction (OWP) of the National Oceanic and Atmospheric Administration’s 
(NOAA) National Weather Service (NWS) is responsible for the development, production, and 
publication of precipitation frequency (PF) estimates for the United States and affiliated 
territories. These estimates require periodic updates to account for new data and improved 
methodologies. Since the early 2000s, OWP has updated PF estimates for various regions of 
the country and published them as Volumes in the NOAA Atlas 14 series 
(https://hdsc.nws.noaa.gov/pfds/). The analysis and methodologies used to estimate 
precipitation frequencies in the NOAA Atlas 14 series assumed that the climate is stationary in a 
statistical context.  

In 2022, NOAA received federal funding under the Bipartisan Infrastructure Law to revise and 
update NOAA PF estimates nationwide to account for a changing climate. Once complete, 
updated national estimates will be published in two volumes of NOAA Atlas 15: Volume 1 will 
provide PF estimates that account for temporal trends in historical observations, and Volume 2 
will provide PF estimates projected into the future under different carbon emissions scenarios 
based on climate model projections. NOAA Atlas 15 will provide seamless estimates for the 
contiguous United States (CONUS) and outside the contiguous United States (oCONUS) 
regions. 

NOAA Atlas 15 begins with a prototype framework developed over the state of Montana, which 
serves as a pilot domain. The deliverables include precipitation frequency estimates and the 
corresponding upper and lower bounds of 90% confidence intervals for a subset of durations 
and frequencies. These estimates are provided as gridded datasets and interactive graphics 
queryable using a web interface that was developed for this purpose. Examples of PF estimates 
are provided for both the Volume 1 and Volume 2 data for the pilot domain, and are delivered 
alongside supporting documentation describing the underlying methods.     

 

2. Introduction 

The NOAA Atlas 15 methods described here expand upon a framework that was developed and 
summarized in the Assessment Report: Analysis of Impact of Nonstationary Climate on NOAA 
Atlas 14 Estimates (OWP, 2022). This framework arose from a multi-year assessment of the 
suitability of modern nonstationary precipitation frequency methodologies and an evaluation into 
the feasibility of using downscaled climate model data to extract future precipitation frequency 
estimates in the presence of a nonstationary climate regime. The resulting Assessment Report 
underwent broad review by stakeholders and federal partners. 

Building upon NOAA Atlas 14 (referred to as Atlas 14 herein) and the Assessment Report 
recommendations, NOAA Atlas 15, Volume 1,  applies historical precipitation observations to 
generate quality-controlled nonstationary precipitation frequency estimates that reflect observed 
trends. Furthermore, the methodology used to produce NOAA Atlas 15, Volume 2, will apply 
downscaled climate model projections to generate estimates for the future under different 
carbon emissions scenarios. The prototype framework for the NOAA Atlas 15 pilot presented 
here (referred to as Atlas 15 herein) encompasses methodologies for:  

●​ Computation of precipitation frequency estimates at station locations using a 
nonstationary regional precipitation frequency analysis method; 
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●​ Spatial interpolation of precipitation frequency estimates to a high-resolution grid; and, 
●​ Application of adjustment factors to account for future changes in the estimates. 

For the purpose of producing preliminary results for public comment on the methodologies, 
initial testing of Volume 1 and Volume 2 was limited to the state of Montana (see Section 3).  
However, the proposed framework is intended to be applicable to the CONUS and oCONUS 
domains.       

Appendix A contains a list of acronyms and abbreviations used throughout this document.  
Appendix B provides standard definitions.  

 

3. NOAA Atlas 15 Pilot 

3.1. Pilot Domain 

Atlas 15 is initiated by the development of a pilot product over the state of Montana (Figure 1). 
This area was selected due to its diverse terrain characteristics, the availability of current 
quality-controlled data from the recently published Atlas 14 Volume 12, which includes the 
states of Idaho, Wyoming, and Montana, and the opportunity for side-by-side comparison with 
precipitation frequency estimates produced using the legacy stationary approach (e.g., Perica et 
al., 2018).     

 

Figure 1. NOAA Atlas 15 pilot domain.  

 

3.2. Pilot Overview 

The Atlas 15 pilot includes precipitation frequency estimates over the state of Montana with 
upper and lower 90% confidence interval bounds on a 30-arc second geographic grid 
(approximately 0.9 km x 0.6 km at this latitude) for selected durations and annual exceedance 
probabilities (AEPs), as defined in Table 1. Volume 1 estimates, which represent conditions in 
2023 as illustrated in Figure 2, were developed according to the nonstationary framework 
described in Section 4. Volume 2 estimates were developed by applying adjustment factors, 
obtained from downscaled climate model outputs, to Volume 1 estimates, as described in 
Section 5. These are available for future time periods within two distinct frameworks: global 
temperature index (GTI) and emissions scenario, which are illustrated in Figure 2. The GTI 
framework provides estimates at specified levels of model-average global temperature 
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anomalies relative to preindustrial values. These estimates are derived from the points in time at 
which models have warmed to each specified benchmark (1.5 - 5°C). In general, these points in 
time will differ from model to model. Unlike the GTI framework, the emissions scenario 
framework provides estimates at specified points in time, at the resolution of decades (2030 – 
2100), under two different shared socioeconomic pathways (SSP2-4.5 and SSP5-8.5), further 
described in Section 5.1.3. These frameworks and their applications are discussed in more 
detail in Section 5.    

Table 1. Atlas 15 pilot precipitation frequency estimates data availability. 

 Volume 1 Volume 2 
Framework n/a GTI  Scenario (SSP2-4.5 and SSP5-8.5) 

Range 2023 1 – 5°C  2030 – 2100   

Durations     60-min, 2-hr, 3-hr, 6-hr, 12-hr, 24-hr, 2-day, 3-day, 4-day, 7-day, 10-day 

AEP*     50%, 20%, 10%, 4%, 2%, 1% 

Spatial resolution     30-arc second grid  

*Annual exceedance probability (AEP) is a probability associated with exceeding a given amount of precipitation at a 
given location for a specified duration at least once in any given year. The inverse of AEP provides a measure of the 
average time between years in which a value is exceeded at least once. For example, the AEP inverse of 2% 
corresponds to an average recurrence interval of 50 years. 
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Figure 2. Availability of NOAA Atlas 15 pilot estimates. Volume 1 estimates were informed by historical 

observation data and are available for the current time (2023). Volume 2 adjustment factors were 
informed by model data and estimates are available for specific global temperature anomalies according 

to the GTI  framework (top) and for future decades according to the scenario framework (bottom). 

4. NOAA Atlas 15 Pilot Volume 1 

4.1. Background and Overview 

The methodology used to produce the PF estimates in Atlas 14 involved fitting the Generalized 
Extreme Value (GEV) distribution to quality-controlled unconstrained annual maximum series 
(AMS) data at individual stations using a regional approach. Distribution parameters, and the 
resulting precipitation frequency estimates at each station location, were determined based on 
the mean of the annual maximum series at the station and regionally derived higher order 
L-moments. Grids of precipitation frequency estimates for each duration were then generated 
based on mean annual maximum (MAM) grids and at-station precipitation frequency estimates 
for that duration (e.g., Perica et al., 2018).    
For the Atlas 15 pilot framework, the GEV distribution fitting used a different method that used 
the regional Maximum Likelihood Estimation (MLE) parameterization approach, primarily 
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because of MLE’s ability to incorporate temporal covariates (e.g., GTI) that can account for a 
non-stationary climate. Additionally, the MLE approach can include other spatial covariates (e.g., 
MAM, elevation) that may improve inference on the distribution of extreme precipitation.   

Similar to Atlas 14, the Atlas 15 pilot framework uses a regional approach to produce 
precipitation frequency estimates at each station location by pooling AMS data from selected 
nearby stations. Regional delineations for both approaches are determined by evaluating 
geographical properties at station locations with respect to mountain ridges and elevation 
differences, in addition to differences in meteorological properties. While the Atlas 14 regional 
delineation decisions resulted from a combination of automatic and manual inspections, the 
process for the Atlas 15 is fully automated.  

 

4.2. Relevant Datasets  

Because Atlas 14 Volume 12 includes the pilot domain, Atlas 15 development took advantage of 
the QA/QC’d rain gauge and other data produced or acquired for the Atlas 14, Volume 12, 
project. Specifically, data obtained from the Atlas 14 effort included: 

●​ Metadata for daily and sub-daily stations in Montana and an approximate 30-km buffer 
area (see Fig. 3); 

●​ Quality controlled AMS precipitation data, defined as the highest precipitation amounts 
per year over 60-min, 6-hr, 24-hr, 4-day, and 10-day durations for those stations; 

●​ Gridded mean annual maximum (MAM) precipitation and mean annual precipitation 
(MAP) data at 30-arc second resolution, originally obtained from the Oregon State 
University’s PRISM (Parameter-Elevation Regressions on Independent Slopes Model) 
Group (Daly et al., 2002; Perica et al., 2018). 

In addition, the following data were collected: 

●​ Annual global near-surface temperature anomalies for 1850 - 2023 from NOAA’s 
National Centers for Environmental Information (NCEI, 2023); 

●​ NASA’s 90-meter Shuttle Radar Topographic Mission (SRTM90) digital elevation model 
(DEM) grids (NASA, 2023). 
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Figure 3. Station locations and histograms illustrating the number of AMS values per station for hourly 
(a,c) and daily (b,d) durations, and the number stations per year within this domain averaged over 5-year 

periods (e). 

 

4.3. Methods 

4.3.1. Statistical Distribution Fitting  

For the Atlas 15 Volume 1 pilot framework, the regional Maximum Likelihood Estimation (MLE) 
approach was used to estimate the GEV distribution parameters at all station locations within 
the domain for selected durations identified in Table 1. The 4-parameter Kappa distribution was 
also tested as an alternative distribution based on feedback received during public review of the 
Assessment Report (OWP, 2022), but preliminary analyses determined that the introduction of a 
fourth parameter did not result in notable improvements for the Montana area.  

The nonstationary GEV probability distribution function, as applied in Atlas 15, is defined as: 

 𝑓 𝑥, 𝑡( ) = 1
σ 𝑥,𝑡( )  1 − ξ 𝑥( ) 𝑥−μ(𝑥,𝑡)

σ(𝑥,𝑡){ }
1

ξ 𝑥( ) −1( )
𝑒𝑥𝑝 − 1 − ξ 𝑥( ) 𝑥−μ(𝑥,𝑡)

σ(𝑥,𝑡){ }
1

ξ 𝑥( )( ) (1) 
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where μ, σ, and ξ are location, scale, and shape parameters, respectively, 𝑥 is a spatial 
coordinate, and 𝑡 represents time (year). For each region, the parameters are defined as follows 
 

Location:  µ 𝑥, 𝑡( ) = 𝑎
1
×𝑀𝐴𝑀 𝑥( ) 1 + 𝑎

2
×𝐺𝑇𝐼 𝑡( )[ ] (2) 

Scale:                                           σ 𝑥, 𝑡( ) = 𝑏
1
×𝑀𝐴𝑀 𝑥( ) 1 + 𝑏

2
×𝐺𝑇𝐼 𝑡( )[ ] (3) 

Shape: ​  ξ 𝑥( )    = 𝑐
0 (4) 

 
The location and scale parameters (Eqns. 2 and 3, respectively) vary with a spatial covariate 
(MAM) and a temporal covariate (GTI; see Section 4.3.3 for more information on covariates). 
Because of its sensitivity to outliers, the shape coefficient is held constant (Eqn. 4) to avoid the 
generation of unreasonable values when modeling through time (OWP, 2022). In addition, a 
lower bound is imposed on the scale parameter (Eqn. 3) to ensure a non-negative result. The 
resulting parameters uniquely define a GEV distribution at each station within the domain for a 
given duration. This distribution provides precipitation frequency estimates for Volume 1 (PFVOL1) 
under a range of AEPs for each respective station location.    

4.3.2. Regionalization 

Regional approaches, which use data from stations that are expected to have similar extreme 
precipitation characteristics, have been shown to yield more accurate estimates of extreme 
quantiles than approaches that use only data from a single station (e.g., Perica et al., 2018). 
The number of stations used to define a region should be large enough to smooth variability in 
at-station estimates, but also small enough that regional estimates still adequately represent 
local conditions. The regionalization process inherently contains a level of subjectivity. For 
example, selection of the maximum allowable distance from the point of interest, or choosing 
attribute variables (e.g., absolute elevation, relative elevation difference, etc.) and their roles in 
determining the weights imposed on individual stations.  

In the Atlas 14 approach, stations were selected based on a maximum allowable distance from 
the station of interest. In addition, station selection was based on a combination of automatic 
and manual inspection of their locations with respect to mountain ridges, elevation differences, 
MAM differences at selected durations, and assessment of similarities/dissimilarities in the 
progression of relevant L-moment statistics across durations (e.g. 60-min, 2-hr, 3-hr, 6-hr, 12-hr, 
24-hr, etc.).  

While completely automated, the regionalization approach used for the Atlas 15 pilot largely 
mimics the Atlas 14 approach, with the exception that the Atlas 15 methodology applied a  
weighting scheme to regional stations based on similarity characteristics identified through the 
regionalization process. Because the number of daily and sub-daily stations varies significantly, 
regionalization was performed separately for durations of less than 24 hours and for durations 
equal to, or longer than, 24 hours. The regionalization approach used for the Atlas 15 pilot was 
as follows:  

●​ For each station within the project area (target station), all stations within a 160-km radius 
from the target station (regional stations) were identified.  
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●​ Attributes for each regional station inside the 160-km radius were used to quantify its 
similarity to the target station. These were defined as the distance from the target station, 
the difference between MAP and MAM values for selected durations for the two locations, 
and the difference in their elevations. Additionally, elevation along a path was used to 
determine if a regional station is separated from the target station by complex terrain, such 
as a mountain ridgeline, resulting in two additional attributes: obstacle height and elevation 
range, as illustrated in Figure 4. Finally, two-sample Chi-squared and Kolmogorov-Smirnov 
tests were used to assess the extent of similarity in distributions between target and regional 
stations.    

 
    Figure 4. Definition of elevation attributes along a path between a target station (black dot) and regional 

station (gray dot) as depicted from above (a) and as a cross-section (b). 

●​ For each attribute, minimum and maximum values were identified resulting in weights (W) of 
1 or 0 that were applied to the corresponding AMS data when attributes fall outside this 
range. When attribute values fall within the specified range, W was derived using a triweight 
kernel function, resulting in a decrease from 1 to 0 as the attribute values approached the 
upper bound (see Table 2 and Figure 5). The bounds on the attribute ranges were estimated 
empirically based on their distributions within the pilot domain.    

●​ The product of the attribute parameter weights was then used to compute a single weight, 
similar to the approach described by Daly et al. (2008), and applied to AMS data at each 
regional station, thus determining the extent of each regional station’s contribution to the 
final estimate for the target station.  

Table 2. Attribute parameters used in weighting of regional stations. 

Attribute  = 1 𝑊  1 > 𝑊 > 0  = 0 𝑊

Distance x ≤ 70 km 70 < x < 160 km x ≥ 160 km 

MAP difference x ≤ 70% 70 < x < 100% x ≥ 100% 

MAM difference x ≤ 40% 40 < x < 75% x ≥ 75% 

Elevation difference  x ≤ 700 m 700 < x < 1200 m x ≥ 1200 m 

Obstacle height x ≤ 600 m 600 < x < 1100 m x ≥ 1100 m 

Elevation range x ≤ 1200 m 1200 < x < 1700 
m x ≥ 1700 m 

P-value based on 
two-sample statistical 
tests 

x ≥ 0.2 0.2 > x > 0.05 x ≤ 0.05 
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Figure 5. Depiction of weights based on selected attributes from Table 2. 

An example of regional weighting around a target station is illustrated in Figure 6 for (a) hourly 
and (b) daily durations. Regional stations with weights close to 1 (black dots) are geographically 
closest to the target station and also have relatively similar precipitation attributes, with minimal 
terrain variability along the path between them and target station. Stations with weights of 0 
(white) are either far from the target station, have different meteorological and geographical 
attributes, and/or are separated by complex terrain. Color gradations between white and black 
indicate stations with weights between 0 and 1. Note that if a regional station has a single 
attribute that is larger than the maximum allowable value (W = 0 column in Table 2), its final 
weight will also be zero, resulting in no contribution to the precipitation estimates at the target 
station.  

4.3.3. Spatial and Temporal Covariates 

As defined in Equations 2 and 3, spatial and temporal covariates were used to compute the 
location and scale parameters of the GEV distribution (Equation 1). Unique parameters, and 
thus unique GEV distributions, were defined for each station within the domain at each duration. 
Among several gridded spatial covariates that were tested (elevation, MAP, MAM, etc.), MAM 
had the best performance across all durations and was therefore retained as a spatial covariate 
for the Atlas 15 pilot domain.  

For the temporal covariate, global CO2 concentration and GTI were both investigated, and 
resulted in similar estimates for the present time (year = 2023). This similarity is not unexpected 
given the thermodynamic relationship between these variables and since greenhouse gas 
forcing (e.g., CO2 concentration) is considered to be the dominant driver of global temperature 
changes since approximately 1960 (IPCC, 2023). As illustrated in Figure 7, the tested temporal 
covariates exhibit similar trends over this period which also coincides with the timing of the most 
abundant station data as shown in Figure 3(e). The result is nearly identical precipitation 
frequency estimates for the present year (2023) regardless of which covariate is used (with 
present-year CO2 ≈ 419 PPM and GTI ≈ 1.1 °C). For Volume 1, GTI was ultimately selected as 
the temporal covariate, defined as the 30-year moving average global temperature anomaly 
relative to the preindustrial period (1851 - 1900), thus ensuring consistency with Volume 2 (see 
Section 5). 
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Figure 6. Example of regional weighting for hourly (a and c) and daily (b and d) durations, with the 

upper-bound determined by the distance weight (black points in c and d). Black dots in panels a and b 
show regional stations that contribute the most to estimations at the target station (encompassed by a 
black square), gray dots show stations with weights between 0 and 1, and white dots indicate stations 

with zero  

 

 
Figure 7. Temporal covariates examined for the Atlas 15 pilot framework, including global CO2 obtained 
from the Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016) and GTI defined 
as the 30-year average global temperature anomaly (original data obtained from NCEI, 2023). 
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4.3.4. Interpolation to a Grid  

The regionalization and statistical distribution fitting described above may either be performed at 
station locations or at the centers of each grid cell across the domain. Because the final Atlas 15 
product is provided on a grid, the former approach requires an additional step of station-to-grid 
interpolation. Testing of both approaches resulted in similar final gridded values over Montana. 
However, grid-based estimation introduced some physically unrealistic artifacts between 
stations and did not permit use of the regional weight that depends on two-sample statistical test 
results (see Section 4.3.2). Moreover, performing the calculation of estimates at stations is far 
less computationally expensive than the calculation at gridded locations.  For these reasons the 
station-based approach was adopted for Atlas 15.       

Although the methodologies used to produce Atlas 14 Volume 12 and this pilot Atlas 15 product 
use different distribution parameterization methods to produce precipitation frequency estimates 
at rain gauge locations, the spatial interpolation approaches are conceptually similar. The 
technique takes advantage of the inherently strong linear relationship that exists between 
precipitation frequency estimates for consecutive AEPs and the MAM. For each duration, the 
calculation uses gridded MAM values as the predictor. At-station ratios between precipitation 
frequency estimates for a given AEP and corresponding MAM estimates are spatially 
interpolated to a grid using a monotonic cubic interpolation technique. Gridded MAM estimates 
are then multiplied by corresponding gridded ratios to create gridded precipitation frequency 
estimates. The same process is repeated for all hourly and daily durations identified in Table 1.  

To ensure consistency in estimates across all durations and frequencies (e.g., 24-hour estimate 
has to be equal to, or greater than, the 12-hour estimate), duration-based internal consistency 
checks were conducted and in rare cases, adjusted as needed. Similar to the approach used for 
Atlas 14 (Perica et al., 2018), checks were performed on precipitation frequency estimates and 
their confidence bounds (see Section 4.3.5.), and was implemented at station locations and 
again at all grids following interpolation.  

The resulting Atlas 15 Volume 1 pilot precipitation frequency estimates for 60-min and 24-hr 
durations and AEPs of 50%, 10%, and 1% are illustrated in Figure 8.  

 

 
Figure 8. Atlas 15 Volume 1 pilot precipitation frequency estimates (PFVOL1) for durations of 60 minutes 

(a-c) and 24 hours (d-f) with AEP of 50% (a and d), 10% (b and e), and 1% (c and f). 
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4.3.5. Confidence Intervals 

A Monte Carlo simulation procedure that accounts for inter-station dependence was used to 
construct lower and upper bounds of 90% confidence intervals on AMS-based precipitation 
frequency curves. This was done by first adding random noise to MLE-derived GEV parameters 
at target stations, the magnitude of which is informed by the spread of individual-station 
parameter values within each region, thus accounting for uncertainty related to the estimation of 
regional parameters. This process was repeated 1,000 times resulting in an ensemble of unique 
distributions from which AMS values were randomly sampled, thus also accounting for 
uncertainties stemming from the stochastic nature of precipitation. Synthetic precipitation 
frequency estimates for each target station were generated from the distributions and sorted.  
Values corresponding to the 5% and 95% level were retained as confidence bounds.  

This approach is similar to that used in NOAA Atlas 14 volumes (see for example Perica et al., 
2018), however with two main differences: 1) Atlas 15 confidence interval estimates account for 
uncertainty in the GEV MLE parameters, while the Atlas 14 estimates account for uncertainty in 
L-moments; 2) inter-station dependence for each region was expressed as a function of 
distance in Atlas 15 in contrast to Atlas 14 where it was assumed to be uniform across the 
region.   

4.3.6. Evaluation of Model Performance 

When testing for goodness-of-fit for nonstationary extreme value models, common practice is to 
compare performance metrics between two or more models to determine which is best suited 
for the application. In the case of Atlas 15, stationary estimates can be obtained by setting the 
temporal covariate parameter coefficients in equations (2) and (3) to zero (i.e.,  and 𝑎

2
= 0

), which can then be compared to nonstationary estimates. One performance metric, the 𝑏
2

= 0
Akaike Information Criterion (AIC), utilizes maximum likelihood to assess the balance between 
model fit and model complexity. Alternatively, the Corrected Akaike Information Criterion (AICc) 
takes sample size into account thus reducing an overfitting bias (e.g., Panagoulia et al., 2014; 
Kim et al., 2017). When assessing model fit, a lower relative score indicates a more optimal 
balance between parsimony and model performance. Given identical regional delineations and 
weights, the AICc provides a measure of added value with increased model complexity when 
accounting for nonstationarity.   

Figure 9 illustrates (a) differences between 24-hour precipitation frequency estimates under 
preindustrial and present-day GTI values, and (b) differences between AICc scores for the 
nonstationary and stationary models for 1% AEP at present time (year = 2023), with dashed 
lines indicating areas with significantly improved performance (p < 0.05) by the nonstationary 
model according to a Likelihood Ratio Test (LRT). Because AICc imposes a penalty on models 
with more parameters, even if equivalent model performance is achieved, the stationary model 
would be granted a lower (better) score than the nonstationary model. This is due to the 
nonstationary model’s inclusion of additional parameters, associated with the temporal 
covariate, when estimating the location and scale parameters, thus making it a more complex 
model.  
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Figure 9. (a) Difference in estimated 24-hr precipitation (inches) for AEP = 1%  between GTIs of 1.1°C 

(approximate GTI in 2023) and 0°C (preindustrial), where red and blue indicates drier and wetter 
present-day conditions, respectively; (b) differences in AICc scores for stationary and nonstationary 
models, where purple and green indicate that either the stationary model or nonstationary model is 

“better,” respectively, with dashed lines encompassing areas where a significant (p < 0.05) improvement 
in nonstationary model performance was observed based on a likelihood ratio test. 

The areas of dark green in Figure 9(b) generally coincide with areas of largest changes in 24-hr 
precipitation frequency estimates for AEP of 1% indicated by deep blues and reds in (a), 
suggesting that the nonstationary model provides better fit than the stationary model in areas 
where precipitation changes are greatest, as expected. The areas of dark purple in (b) generally 
coincide with little-to-no change in precipitation in (a), indicating that the nonstationary model is 
unnecessarily complex in these areas. This analysis illustrates the flexibility of the nonstationary 
model. While the additional terms in the nonstationary model may not be necessary in areas 
absent of trends, the added value of the nonstationary term transcends the penalty imposed 
from increased complexity in areas where trends do exist. As Atlas 15 is expanded beyond the 
Montana domain, it is expected that greater, and largely positive, extreme precipitation trends 
will be encountered, particularly toward the Midwest and eastern areas of the U.S. (e.g., Marvel 
et al., 2023). This underscores the need for a model that accounts for nonstationarity when 
estimating current extreme precipitation conditions (e.g., Cheng and AghaKouchak, 2014; Vu 
and Mishra, 2019; Feitoza Silva et al., 2021).     

17 



 

4.3.7. Comparison with Atlas 14 Volume 12 estimates  

Figure 10 illustrates differences in estimates for 60-minute and 24-hr durations for an AEP of 1% 
between the stationary Atlas 14 and the nonstationary Atlas 15 estimates. The differences are 
generally within about 20% and do not appear to be related to geographical features. The 
largest differences are attributed to the use of a nonstationary model for Atlas 15. Comparison 
of the 24-hr differences in Figure 10 (c and d) and Figure 9 (a) reveals consistent spatial 
patterns. In areas where the Atlas 15 nonstationary present-day estimates are higher (lower) 
than preindustrial values, the Atlas 15 estimates also are generally higher (lower) than the Atlas 
14 estimates. It can thus be concluded that differences between Atlas 15 and Atlas 14 are 
largely due to the use of a nonstationarity framework.   

 
Figure 10. Differences between Atlas 15 Volume 1 and Atlas 14 60-min and 24-hr precipitation frequency 
estimates (PFVOL1) for AEP of 1% expressed as inches (a,c) and as percent (b,d). Blue indicates areas of 

higher Atlas 15 values and red indicates areas of higher Atlas 14 values. 
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5. NOAA Atlas 15 Pilot Volume 2 

5.1. Background and Overview 

5.1.1. Impacts of Global Temperature on Extreme Precipitation 

Research over the past several decades has informed our understanding of the effects of global 
temperature changes on heavy precipitation. Regular assessments of research by the 
international community through the Intergovernmental Panel on Climate Change (IPCC) and 
the national community through the U.S. National Climate Assessment (NCA) effort of the U.S. 
Global Change Research Program (USGCRP) provide syntheses of this understanding. These 
syntheses are the outcome of meticulous and exhaustive work by large teams of subject matter 
experts, and undergo multiple rounds of external review. The 2nd, 3rd, 4th, 5th, and 6th Assessment 
Reports of the IPCC all addressed the topic of heavy precipitation, as do all five NCA 
assessments [see IPCC (2023) and USGCRP (2023) for the latest reports, respectively]. These 
syntheses have consistently stated the likelihood of general increases in heavy precipitation in 
response to higher temperatures . The latest (Sixth) IPCC assessment states that “heavy 
precipitation will generally become more frequent and more intense.” Specifically, it is extremely 
likely that the intensity and frequency of heavy precipitation events will increase in North 
America with global temperatures of 2°C above preindustrial values (Seneviratne et al., 2021), 
which is largely due to the expected increase in atmospheric water vapor according to the 
Clausius-Clapeyron relationship. The latest (Fifth) U.S. NCA concludes that “the frequency and 
severity of heavy precipitation increases with the [global temperature index]” (USGCRP, 2023). 
Furthermore, a recent report by the National Academies of Science, Engineering and Medicine 
(NASEM) on probable maximum precipitation provided a recent review of research and the 
implications for very extreme precipitation. It stated, “the assumption that climate change does 
not affect extreme rainfall, implicit in traditional stationary analysis, is contrary to multiple lines of 
evidence. Neglecting climate change generally underestimates both present-day and future risk 
of extreme rainfall”. This report further states that “scientific confidence in climate-driven 
changes in extreme weather depends on three separate lines of evidence: a clear trend in 
observations, a clear trend in climate model simulations, and physical understanding of the 
connection between climate change and extreme trends, with confidence highest if all three 
lines present” (NASEM, 2024).  

5.1.2. Climate Models  

The quantitative effect of global temperature changes on precipitation frequency values is a 
function of several atmospheric physical processes and varies by location, duration, and AEP. 
Summaries of these effects and dependencies can be found in the IPCC Sixth Assessment 
Report [Chapter 11, Seneviratne et al. (2021)], O’Gorman (2015), and Neelin et al. (2022). 
General circulation model (GCM) simulations and their downscaled regional derivatives are 
used to quantify these effects. Because raw GCM data are generally only available at coarse 
spatial resolutions (50 - 250 km) and are often characterized by biases, many applications 
require downscaling to allow for the extraction of localized data, such as extreme precipitation, 
for which major biases have been removed. The process of downscaling using statistical 
methods also introduces high resolution spatial detail into the precipitation climatology. 
Statistical downscaling models are developed by comparing raw GCM data with observational 
datasets. However, for projected values, downscaling models have only raw GCM projections to 
constrain their values (there is no future equivalent to the observed values for the historical 
climatology). Thus, there is no information at scales smaller than the resolutions of the GCMs. 
This is not the case for dynamically-downscaled datasets. Since dynamical downscaling models 
are regional equivalents to the GCMs in terms of their representation of atmospheric physical 
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processes, they can simulate smaller-scale physical features. A prime example is topography 
where some key physical processes, such as downwind moisture shadowing and topographic 
uplift enhancement will be more realistically portrayed in a regional climate model.  However, 
these models are much more computationally expensive than statistically downscaling models. 
Thus, the number and variety of datasets is much more limited.  

Based on these considerations, the robustness of information on spatial variability of future 
projections at scales smaller than the typical GCM grid cell size was judged by the authors of 
Volume 2 to be insufficient for incorporation into the Atlas 15 pilot. The adjustment factors 
applied here were thus smoothed over scales of a few hundred kilometers (a few grid cells) to 
produce robust estimates at regional scales. Because of this smoothing, application of the 
adjustment factors (as described in the next section) do not change the relative small-scale 
spatial structure of the estimates obtained for Volume 1. 

5.1.3. Adjustment Factor Frameworks  

Future values for Volume 2 (PFVOL2) were developed by applying adjustment factors to the 
Volume 1 estimates (PFVOL1). The adjustment factors were calculated for two frameworks: global 
temperature index (GTI) and scenarios (i.e. climate model emissions scenarios). In the GTI 
framework, which is comparable to the framework  used extensively in the IPCC 6th Assessment 
Report (IPCC, 2023), adjustment factors are calculated for the years in which each model’s 
global-average temperature reaches specified temperature anomalies  (degrees above a 
baseline). A key assumption for use of the GTI framework is that precipitation frequency at a 
specified GTI is independent of the year during which it occurs due to the rapid response of 
atmospheric water vapor uptake to change in temperature. It is thus expected that similar values 
per GTI would be obtained between different models, and even when driving models are forced 
with different emission scenarios (i.e., SSP2-4.5, and SSP5-8.5). There are some limitations of 
this assumption that mostly relates to whether the temperature of land and surrounding oceans, 
and its relationship to the global average temperature change, differ between the faster-warming 
and slower-warming simulations. At this time, there is no evidence of this, so for simplicity, the 
independence assumption is made for the present application. This approach tends to show 
smaller model spread than for fixed times (i.e., for the year 2060). Figure 11 shows time series 
of global average temperatures under the SSP5-8.5 scenario for 16 models used in the creation 
of the statistically-downscaled datasets discussed in the next section. As an example, the year 
at which these models reach 3°C of warming varies from 2040 to 2078. 

In the scenario framework, adjustment factors represent the conditions for a particular decade 
under a specified future scenario. Scenarios reflect what is referred to as Shared 
Socioeconomic Pathways (SSP) and represent a combination of changes in future conditions 
including population, economic growth, and the resulting greenhouse gas emissions and 
land-use changes (O’Neill et al., 2017). In the example presented in Figure 11, for the SSP5-8.5 
scenario, the conditions for the year 2060 include contributions from models with warming 
ranging from a little over 2°C to over 4°C. The two scenarios chosen here for future precipitation 
frequency values, SSP2-4.5 and SSP5-8.5, are considered intermediate and very high 
scenarios, respectively (Jay et al., 2023). These represent a multi-model mean global 
temperature index of about 3°C and about 5°C, relative to preindustrial conditions, by the end of 
the 21st Century (Lee et al. 2021). Note that there are also two lower-emissions scenarios, 
SSP1-1.9 and SSP1-2.6. In these scenarios, the global temperature is nearly constant through 
the 21st Century (Lee et al. 2021). Thus, for Atlas 15 applications needing low scenarios, our 
1.5°C and 2.0°C GTI results provide a suitable approximation. 
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Figure 11. Time series of global average temperature anomaly, with respect to 1851-1900, for the 16 

models used in the downscaling datasets. 

5.2. Relevant Datasets 

Table 3 lists characteristics of the datasets planned for use in the development of the Atlas 15 
Volume 2 adjustment factors. Due to limits on the availability of data at the time of analysis, the 
Montana pilot adjustment factors were based on an analysis of only three of these datasets, 
LOCA2, STAR, and NA-CORDEX, which are discussed below. Final Atlas 15 adjustment factors 
will be based on an analysis of all of the datasets identified in Table 3. 

Table 3. Characteristics of datasets planned for use in development of adjustment factors for the Atlas 15 
Volume 2 CONUS domain. 

Downscali
ng  Statistical, based on Dynamical, based on 

Large Ensembles 

Approach CMIP6 CMIP6 CMIP5 CMIP5 

Target Daily durations Sub-daily durations Low AEPs 

Dataset  LOCA21 STAR-ESD
M2 UWPD3 CONUS40

44 NIU5 NA-CORD
EX6 

GFDL-SP
EAR7  

CESM-LE
NS8  

Spatial 
Resolution 1/16° 1/24° 1/10° 4 km 3.75 km 25 km 50 km 1° 

Temporal 
Resolution Daily Daily Daily 15-min 15-min Hourly Daily 6-hourly* 

and daily 

Temporal 
Domain 1950-2100 1950-2100 1950-2100 1979-2021 

2022-2064 

1990-2005 
2041-2055 
2085-2100 

1950-2100 1921-2100 1920-2100 

Scenarios  SSP2-4.5 
SSP5-8.5 

SSP2-4.5 
SSP5-8.5 

SSP2-4.5 
SSP5-8.5 SSP3-7.0 RCP4.5 

RCP8.5 
RCP4.5 
RCP8.5 SSP5-8.5 RCP8.5 
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1 LOCA2 - Localized Constructed Analog v2   
2 STAR-ESDM - Seasonal Trends and Analysis of Residuals Empirical-Statistical Downscaling Model 
3 UWPD - University of Wisconsin Probabilistic Downscaling   
4 CONUS404 - USGS CONterminous U.S. 404 high-resolution hydro-climate dataset 
5 NIU - Northern Illinois University Convection-Permitting 
6 NA-CORDEX - North American Coordinated Regional Downscaling Experiment 
7 GFDL-SPEAR - Geophysical Fluid Dynamics Laboratory-Seamless System for Prediction and EArth System Research 
8 CESM-LENS - Community Earth System Model-Large Ensemble Community Project  
* 6-hourly data are available for three time periods: 1990-2005, 2026-2035, 2071-2080. 

Two statistically downscaled products were used to generate future adjustment factors at daily 
durations. Both products, LOCA2 (Pierce et al., 2014 and 2023; 
https://downscaling.lbl.gov/data/) and STAR-ESDM (Hayhoe et al., 2023), are generated 
through statistical downscaling of Coupled Model Intercomparison Project Phase 6 (CMIP6) 
data (Eyring et al. 2016; https://pcmdi.llnl.gov/CMIP6/). LOCA2 and STAR-ESDM data are 
generated with deterministic statistical models that employ empirical relationships between 
synoptic- and local-scale historical spatial patterns and temporal signals. Both products are 
available at a daily temporal resolution for 1950-2100 and at spatial resolutions of 1/16th degree 
(LOCA2) and 1/24th degree (STAR-ESDM). For the present work, data were extracted from 16 
unique GCMs that were downscaled by both modeling groups, resulting in 32 ensemble 
members. This analysis used only the shared socioeconomic pathway 5-8.5 (SSP5-8.5), which 
excludes mitigation, because it has the highest range of greenhouse gas emissions among the 
scenarios used in CMIP6. This scenario thus maximizes the sample size of the number of 
models that reach specified GTIs.  

Both LOCA2 and STAR-ESDM were also used in the Fifth National Climate Assessment (NCA5) 
which was released in 2023 (USGCRP 2023). Figure 12 describes the framework for scaling 
low-resolution global data from CMIP6 (left side of the diagram) down to bias-adjusted 
high-resolution products (right side of the diagram) used in NCA5. The two downscaling 
algorithms (center of the diagram), LOCA2 and STAR-ESDM, were developed for each of the 16 
selected GCMs (shown in dark blue) by training with two observational datasets (Livneh for 
LOCA2 and nClimGrid for STAR-ESDM; shown in green). The resulting algorithms produce 
high-resolution bias-adjusted datasets of daily temperature and precipitation for the training 
dataset’s observational period. These model-specific algorithms are applied to global projections 
to produce high-resolution projections of temperature and precipitation in the United States for 
each model (shown in light blue). Both LOCA2 and STAR-ESDM provide gridded data for the 48 
contiguous states, and STAR-ESDM additionally includes downscaled data for individual 
stations in Alaska, Hawai’i, and Puerto Rico. 

In general, adjustment factors are a function of storm duration. There are several climate model 
datasets available to support estimates for daily and longer durations, but because there are 
fewer datasets available at sub-daily resolutions, this sample size is much smaller. The 
methodological approach for Atlas 15 is to use sub-daily resolution climate model datasets to 
explore the relationship of sub-daily adjustment factors to daily adjustment factors. Because 
sub-daily CMIP6 data are not currently available, the NA-CORDEX archive, which includes 
various dynamically downscaled CMIP5 products (Mearns et al., 2017; https://na-cordex.org/) 
was used to examine the relationship between daily and sub-daily adjustment factors. A total of 
7 downscaled simulations were used, representing selected combinations of 4 driving CMIP5 
GCMs and 3 regional climate models. 
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Figure 12. Flowchart illustrating the steps taken to downscale low-resolution global data from CMIP6 (left 
side of the diagram) to bias-adjusted high-resolution NCA5 products (right side of the diagram). Figure 
credit: USGCRP/ICF, USGCRP, and North Carolina State University. Taken from Basile et al. (2023). 

5.3. Methods 

5.3.1. Computation of Adjustment Factors 

Unlike Volume 1 which utilized historical station gauge data, the GEV distribution parameters for 
the Volume 2 pilot were estimated using gridded AMS values extracted from LOCA2 and 
STAR-ESDM. The location, scale, and shape parameters, which are computed in a similar 
manner as Volume 1 (see Section 4.3.), are thus identified for every grid cell within the domain 
and for each of the 32 ensembles for daily and longer durations during the 1950 – 2100 period 
(see Section 5.3.2 for details regarding sub-daily storm durations). The resulting GEV 
distributions were used to generate precipitation frequency estimates at grid cell resolutions 
native to each statistical model. Thus, while the Volume 1 estimates originate at station 
locations, with one value per duration and AEP, the Volume 2 estimates originate on a grid, with 
32 values (one from each model ensemble) per duration and AEP.  

Once absolute precipitation frequency estimates were obtained for each GTI (1.5 - 5°C), their 
changes, relative to a baseline year of 2023, were computed. Figure 13 conceptually illustrates 
this relationship using a GTI of 3°C. Note that this example includes the model-average GTI for 
simplicity, but that the actual adjustment factors were instead computed for each individual 
model. Here, precipitation frequency estimates are generated for the present (2023) and then 
again for a future time when the GCMs reach 3°C. Adjustment factors represent the difference 

23 



 

in precipitation frequency estimates between these times, and thus provide estimates for PFVOL2  
when applied to PFVOL1 as described in Section 5.3.3.        

 

 
Figure 13. Conceptual illustration of how adjustment factors are computed for GTI = 3°C. The black line 
illustrates GTIs during the historical period and the red line illustrates model-average GTIs for the future. 
Multi-model adjustment factors are computed as the relative differences between precipitation estimates 

obtained during 2023 and those obtained when the models reach 3°C.  

After adjustment factors were computed, a Gaussian filter was used to smooth their spatial 
variability and the data were regridded to a common 0.1° resolution. For each 0.1°grid cell in the 
pilot domain, there were 32 adjustment factor values per duration, AEP, and GTI, each resulting 
from a separate model ensemble member. These factors were then averaged across the 
models and used to estimate 90% confidence intervals which represent model spread.  

5.3.2. Revision of Sub-Daily Adjustment Factors  

Due to small sample sizes, rather than use sub-daily adjustment factor estimates that may be 
extracted from dynamically-downscaled climate model data directly, their relative relationships to 
the daily adjustment factors, which are based on much larger sample sizes, were applied. This 
makes use of the physics-based processes in the dynamically-downscaled climate model 
simulations, such as those available in the NA-CORDEX archive, but avoids the possibility that 
the absolute adjustment factors from the small number of sub-daily simulations may not be 
representative of the much larger daily data ensemble. This preserves internal consistency 
across all durations. 

For the pilot framework, relative relationships between daily and sub-daily adjustment factors 
were generated based on an investigation of differences between projected changes in daily 
and sub-daily extreme precipitation according to the NA-CORDEX archive. Because these data 
are produced with high-resolution dynamical models, they are more likely to capture changes in 
small-scale convective precipitation which may make a greater contribution to total precipitation 
at sub-daily durations than at daily-and-longer term scales.   

 

24 



 

 

5.3.3. Application of Adjustment Factors  

The resulting area-averaged adjustment factors for durations of 60 minutes, 24 hours, and 10 
days, and AEPs of 50% and 1%, under a range of global temperature indices , are illustrated in 
Figure 14. The spatial patterns of 24-hr duration adjustment factor values under a range of 
AEPs are illustrated in Figure 15 for GTIs of 1.5°C and 5°C. The smoothed values do not 
resolve small-scale features, such as terrain, thus ensuring that such information from Volume 1 
data will be preserved in the final Volume 2 estimates.  

 
Figure 14. Atlas 15 Volume 2 area-averaged adjustment factors (%) for AEPs = 50% and 1%  per GTI for 

60-min, 24-hr and 10-day durations.   
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Figure 15. Atlas 15 Volume 2 adjustment factors for 24-hr duration and a range of AEPs under GTIs of 
1.5°C (top) and 5°C (bottom). These adjustments are with respect to the current global temperature 
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relative to 1851-1900, which is 1.1°C. Thus, these adjustments are for further warming of 0.4°C and 
3.9°C. 

 

Once daily and sub-daily adjustment factors were calculated in the GTI framework, they were 
calculated in the scenario framework by mapping them to individual decades during 2030 – 
2100 under SSP2-4.5 and SSP5-8.5. For this mapping, the multi-model mean GTIs per decade 
under each scenario were calculated. The gridded adjustment factors and confidence intervals 
were identified at the two GTIs nearest to those for each decade and scenario, and 
scenario-based values were then obtained through interpolation.  

Future precipitation frequency estimates (PFVOL2) were developed by applying the resulting 
adjustment factors (AFs), as defined under both the GTI and scenario frameworks, to the 
Volume 1 estimates (PFVOL1). Specifically, for each duration, 

                                    (5)  𝑃𝐹
𝑉𝑂𝐿2

(𝑥, 𝑡) = (1 + 0. 01×𝐴𝐹(𝑥, 𝑡))×𝑃𝐹
𝑉𝑂𝐿1

𝑥( )
 

where AF values are functions of space  and time  dependent on GTI, emissions scenarios, 𝑥 𝑡
and AEP. The multiplicative term is based on an adjustment factor that expresses (in units of 
percent) the relative change in the future from the PFVOL1 baseline which represents the year 
2023. Thus, the final PFVOL2 values represent future precipitation estimates for the same 
durations and AEPs as PFVOL1, but are also functions of global temperature (GTI framework) and 
time (scenario framework).     

The 90% confidence interval bounds for Volume 2 adjustment factors, which were estimated 
from the model spread, were combined with the Volume 1 values to obtain the Volume 2 
confidence bounds. The final Volume 2 values are thus expressed as precipitation depths, as 
with those for Volume 1, for all durations and AEPs.   

 

6. NOAA Atlas 15 Precipitation-Frequency Estimates Over Montana 

The final Volume 1 and Volume 2 estimates are packaged as Zarr files defined in Table 4. The 
time dimension for the Volume 1 file (A15_Vol1.zarr) has a length of one, which represents 
present-day values, while the Volume 2 scenario framework files (A15_Vol2_SSP245.zarr and 
A15_Vol2_SSP585.zarr) have lengths of eight (one per decade from 2030 until 2100) and the 
Volume 2 GTI file (A15_Vol2_GWL.zarr) has a length of nine (one per temperature level). The 
remaining attributes have the same characteristics across both volumes and frameworks.  

Table 4. Description of data for Volume 1 and Volume 2 Zarr files. 

 Volume 1 Volume 2 
Framework n/a GTI Scenarios (SSP2-4.5 and SSP5-8.5) 

File name A15_Vol1.zarr A15_Vol2_GWL.zarr A15_Vol2_SSP245.zarr 
A15_Vol2_SSP585.zarr 

Attribute -  
name (length) 

Time - time (1) GTI - gwl (9) Time - time (8) 
Estimates and confidence limits - climit (3) 
Duration - dur (11) 
Annual exceedance probability - aep (6) 
Latitude - lat (591) 
Longitude - lon (1473) 
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Spatial plots of selected precipitation frequency estimates for AEP of 1% under Volume 1 
(current estimates as of 2023) and Volume 2 (GTI = 3 and 5°C) are illustrated in Figure 16. The 
location of Helena, Montana is indicated by the black x, for which depth-duration-frequency 
(DDF) curves are illustrated for Volume 1 in Figure 17, with projected changes under Volume 2 
for select GTIs and AEPs in Figure 18. Precipitation estimates with 5% and 95% confidence 
bounds for 24-hr and AEP of 1% are illustrated in Figure 19.   

 
Figure 16. Atlas 15 precipitation estimates (inches) for AEP of 1% and durations of 60 minutes (a-c) and 

24 hours (d-f) for Volume 1 (a and d), and Volume 2 GTI = 3°C (b and e) and 5°C (c and f). Black x 
indicates the location of the Helena, MT station which is used as an example in Figures 17 and 18. 

 

 

 
Figure 17. Atlas 15 Volume 1 depth-duration-frequency curves for selected durations and AEPs at 

Helena, Montana (112.0 W,46.6 N). 
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Figure 18. Atlas 15 depth-duration-frequency curves for selected durations and AEPs at Helena, MT 
(112.0 W,46.6 N) for Volume 1 (present) and Volume 2 (GTI = 3°C and 5°C). 

 

 

Figure 19. Atlas 15 precipitation frequency estimates (inches) for AEP of 1% and 24-hr duration (d-f),  
with 5% (a-c) and 95% (g-i) confidence limits for Volume 1 (a,d,g), and Volume 2 GTI = 3°C (b,e,h) 

 and 5°C (c,f,i). 
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Appendix A: Acronyms and Abbreviations 
 
AEP​ ​ ​ Annual Exceedance Probability 
AIC​ ​ ​ Akaike Information Criterion 
AICc​ ​ ​ Corrected Akaike Information Criterion 
AMS​ ​ ​ Annual Maximum Series 
CMIP5​​ ​ Coupled Model Intercomparison Project Phase 5 
CMIP6 ​ ​ Coupled Model Intercomparison Project Phase 6 
DDF​ ​ ​ Depth-duration-frequency  
DEM​ ​ ​ Digital Elevation Model  
GCM​ ​ ​ General Circulation Model 
GEV​ ​ ​ Generalized Extreme Value 
GTI​ ​            Global Temperature Index 
IPCC​ ​ ​ Intergovernmental Panel on Climate Change 
LOCA2​ ​ Localized Constructed Analogs Version 2 
MAM​ ​ ​ Mean Annual Maximum 
MAP​ ​ ​ Mean Annual Precipitation  
MLE​ ​ ​ Maximum Likelihood Estimation 
NA-CORDEX​ ​ North American Coordinated Regional Downscaling Experiment 
NCA5​ ​ ​ Fifth National Climate Assessment 
NCEI​ ​ ​ National Centers for Environmental Information 
NOAA​ ​ ​ National Oceanic and Atmospheric Administration 
NWS​ ​ ​ National Weather Service 
OWP​ ​ ​ Office of Water Prediction 
PF​ ​ ​ Precipitation Frequency 
PRISM​​ ​ Parameter-Elevation Regressions on Independent Slopes Model 
SRTM90​ ​ 90-meter Shuttle Radar Topographic Mission 
SSP​ ​ ​ Shared Socioeconomic Pathway  
STAR-ESDM​ ​ Seasonal Trends and Analysis of Residuals Empirical-Statistical  

Downscaling Model 
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Appendix B: Glossary 
 
Adjustment Factor – A multiplicative term that is applied to Atlas 15 Volume 1 precipitation 
frequency estimates to obtain future estimates for Volume 2. Adjustment factors are computed 
based on an analysis of GCM datasets.    
 
Annual Exceedance Probability (AEP) - The probability associated with exceeding some 
precipitation depth for a specified duration at least once for any given year. The inverse of AEP 
provides a measure of the average time between years (not events) in which a particular value 
is exceeded at least once. The term is associated with analysis of annual maximum series. 
  
Annual Maximum Series (AMS) – A time series of the largest precipitation amounts in a 
continuous 12-month period (calendar or water year) for a specified duration at a given location.    
 ​   
Constrained Precipitation – Total precipitation depth during a fixed window of time that often 
corresponds with observer records (e.g., 8:00 am – 8:00 am for 1-day totals). This observation 
requires conversion to an unconstrained value (see Unconstrained Precipitation) because the 
maximum time-integrated precipitation totals rarely fall within the constrained window of time.  
 ​ ​  
Depth-Duration-Frequency (DDF) Curve – Graphical depiction of precipitation frequency 
estimates in terms of depth, duration and frequency (AEP for AMS).  
 
General Circulation Model (GCM) – Dynamical numerical model used to represent physical 
processes within Earth’s climate system. Global CGMs typically have relatively coarse spatial 
resolutions (50 - 250 km) and can be run over past time periods or future time periods, resulting 
in hindcast or forecast simulations, respectively.    
 ​ ​ ​  
Generalized Extreme Value (GEV) Distribution – A family of continuous probability distribution 
functions that can be used to describe the behavior of extreme events. The distribution is 
defined by three parameters: location, scale, and shape.​  
​  
Global Temperature Index  (GTI) – Annual, or multi-year averaged, global-average 
temperature anomaly, relative to preindustrial values. For Atlas 15 Volume 1, GTI is defined as 
the 30-year averaged global temperature anomaly based on observation, and for Atlas 15 
Volume 2, GTI is defined by anomalies averaged across multiple GCMs. ​  
 
Mean Annual Maximum (MAM) - The average of annual maximum series data for a specified 
duration and location.     
​ ​ ​  
Mean Annual Precipitation (MAP) – The average precipitation for a year (usually calendar). 
Can be based on the whole period of record or for a selected period (usually 30-year period 
such as 1971-2000).   ​  
  
Maximum Likelihood Estimation (MLE) – Method of estimating distribution parameters by 
optimization of the log-likelihood function to ensure the optimal fit to a given sample. ​  
​  
Precipitation Frequency (PF) – For the AMS-based analysis, annual exceedance probability 
associated with specific precipitation magnitude for a given duration and location.   
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Shared Socioeconomic Pathway (SSP) – Climate change scenarios that describe changes in 
global radiative forcing based on socioeconomic projections through 2100.    
​  
Unconstrained precipitation – Total precipitation depth during a moving window of time that 
encompasses the maximum depth for a specified duration.  
 

See also https://www.weather.gov/owp/hdsc_glossary for more standard definitions. 

​  
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