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ABSTRACT: This study describes an improved seasonal sea level forecasting scheme by the Pacific ENSO Applications
Climate Center (PEAC). Since 2005, an operational sea level forecasting scheme (3–5 months in advance) for the
US-affiliated Pacific Islands (USAPI) has been instrumental (http://www.prh.noaa.gov/peac/sea-level.php). The El Niño-
Southern Oscillation (ENSO) climate cycle and the sea-surface temperatures (SSTs) in the tropical Pacific Ocean are taken
as the primary factors in modulating these forecasts on seasonal time scales. The current SST-based canonical correlations
analysis (CCA) hindcast forecasts have been found to be skillful. However, the skill gradually decreases as the lead-time
increases. This has motivated us to revisit the forecasting scheme at PEAC. In contrast to previous endeavours which relied
only on SSTs, we now incorporate both trade winds and SSTs for modulating sea level variability on seasonal time scales.

The average forecasts for zero to three seasons’ lead-times are found to be 0.647, 0.598, and 0.625 for combined
SST and the zonal component of the trade wind (U), SST, and wind (U), respectively. It is therefore revealed that the
combined SST-wind-based forecasts are more skillful than the SST or wind-based forecasts alone. It is particularly more
efficient on longer time scales for most of the stations (e.g. 10–25% improvement on two to three seasons’ lead-times).
The improvements of these forecasts have enabled the capability of our clients in the USAPI region to develop a more
efficient long-term response plan for hazard management.
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1. Introduction

This study describes an enhancement of the sea level
forecasting scheme by the Pacific ENSO Applications
Climate Center (PEAC) on zero to three seasons (i.e.
3–12 months) lead-time. Currently based on the sea-
surface temperatures (SSTs) in the tropical Pacific Ocean,
PEAC runs a canonical correlation analysis (CCA) sta-
tistical model to generate sea level forecasts for the
US-affiliated Pacific Islands (USAPI) with lead times of
several months or longer (Chowdhury et al., 2007b). On
the basis of the hypothesis that El Niño-Southern Oscil-
lation (ENSO) has a significant impact on the climate
variability in the Pacific islands (i.e. Bjerknes, 1966,
1969; Ropelewski and Halpert, 1987; Chu 1995; Chu
and Chen 2005; Barnston and He 1996; Yu et al., 1997;
McPhaden et al., 2006; also see references therein), the
ENSO climate cycle and the associated SSTs in the trop-
ical Pacific Ocean are taken as the primary factors in
modulating sea level variability on seasonal time scales.
The co-variability between the tropical Pacific SST and
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sea level has also been used to construct a statistical
Markov model (Xue and Leetmaa, 2000) where it has
been shown that tropical sea level can be forecast with
a moderate forecast skill due to predictability of ENSO
(also see Xue et al ., 2000).

The USAPI communities [i.e. Guam, Saipan, Palau
(Malakal Harbor), Republic of the Marshall Islands
(RMI) (Majuro, Kwajalein), Federated States of Microne-
sia (FSM) (the States of Chuuk, Kosrae, Pohnpei, and
Yap) and American Samoa (Pago Pago) (Figure 1)] are
most vulnerable to climate variability and change (Shea
et al., 2001), with low sea level during El Niño years
and high sea level during La Niña years (Chowdhury
et al., 2007a). Because of this ENSO-related fluctuation
of sea level, there has been a demand for advance infor-
mation on sea level variability on month-to-seasonal time
scales. The PEAC Center produces the real time sea
level forecasts and publishes them at the official web site
of PEAC (http://www.prh.noaa.gov/peac/sea-level.php).
This information has also been distributed through the
appropriate channels (e.g. printed Quarterly issue of the
Pacific ENSO Update newsletter) to the right stakehold-
ers (see Schroeder et al., 2012 for an extensive review of
PEAC’s activities on climate forecasting, warning, and
response activities).
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Figure 1. Locations of US-affiliated Pacific Islands–that are studied are labelled with black dots (note that because of lack of data, the atoll
Kapingamarangi was finally dropped from the analysis).

While the 3–5 months forecasts have served our clients
very well over the years, the demand for longer lead time
(e.g. 6–12 months) forecasts has increased considerably
for the support of long-term planning and management
in climate-sensitive sectors such as water resources, fish-
eries and aquaculture, agriculture, emergency manage-
ment, utilities, and coastal zones. This is the primary
consideration that motivated us to revisit the current sea
level forecasting scheme at PEAC. In addition, the pro-
nounced sea level rise at several locations in the USAPI
region during the La Niña years of 2007–2008 (Chowd-
hury et al., 2010) also motivated us to explore the role
of the trade winds in this recent rise. While seasonal
variations in sea level can partly be caused by seasonal
changes in wind, the recent trend of enhanced trade
winds in the western tropical Pacific (WTP) (Lee and
McPhaden, 2008; Feng et al., 2010; Timmermann et al.,
2010; Merrifield, 2011; Merrifield and Maltrud, 2011;
L’Heureux et al., 2013; Newman, 2013) may be consid-
ered as one of the possible explanations for this rise.
Tide gauge records indicate that the current high sea
level trends in the WTP represent a significant shift in
trend since the early 1990s as compared with the previ-
ous 40 years (Merrifield, 2011). Merrifield and Maltrud
(2011) attributed the rise to a multidecadal increase in
the Pacific trade winds, similar to, but distinct from,
wind-driven La Niña events on inter-annual timescales.
It is speculated that the Pacific trade wind enhancement
since the early 1990s is fuelled by an increase in latent
heat content in a warming atmosphere, which invigorates
deep convection in the tropics and speeds up the atmo-
spheric circulation. This generally supports the notion
of a strengthening Hadley circulation in recent decades
(Chen et al., 2002; Mitas and Clement, 2005).

Whether these enhanced trade winds are a short-
term anomaly or a longer-term trend remains an open
question. For example, based on National Centers for
Environmental Prediction (NCEP)/National Center for

Atmospheric Research (NCAR) reanalysis II records,
Garza et al. (2012) noted that changes in trade wind
strength over the WTP (150◦E to the Dateline) are small
over the last three decades. Nevertheless, there is a clear
indication that, in addition to thermal expansion, the trade
wind is one of the major driving forces for sea level
variations in the USAPI region. As a result, the current
SST-based CCA forecasts at PEAC are found to be less
efficient in capturing the seasonal sea level variability
for the USAPI region; this is particularly true when the
lead-time increases to two to three seasons. Therefore,
in addition to SST, the recent trend of trade winds is
hypothesized to be a contributing factor for seasonal sea
level variability on month-to-seasonal time scales. The
contributions by the trade winds have been thoroughly
examined to determine the possibilities of improvement
of the current operational forecasting schemes at PEAC.
The final result is aimed at providing more skillful,
longer-term seasonal sea level outlooks for the USAPI
region.

This article is organized in the following manner.
Section 2 describes the data procurement process and a
brief description of the research methodology. Research
results and discussions are located in Section 3 and the
concluding remarks are presented in Section 4.

2. Data and research methodology

The research-quality sea-level data from the University of
Hawaii Sea level Center (UHSLC) are used in this study.
NCEP/NCAR historical monthly fields of the global SST
and zonal wind (U) at 850-hPa are also used. Consistent
with the current climatology of sea level records, the
record starting from January 1975 to December 2010
is used. The methodology is comprised of composite
analyses of seasonal variations of SST and zonal winds,
linear correlation of SST and wind (henceforth, wind or
zonal wind synonymously used) with sea level, empirical
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Table 1. Percent of variance explained by eigenvectors
(Ek/SST-Wind) for the Pacific sea-surface temperatures and
winds (values in parentheses are cumulative variance by the

k largest eigenvalues).

Ek/SST-
Wind

JFM AMJ JAS OND

E1 27.0 (27.0) 18.5 (18.5) 27.0 (27.0) 27.5 (27.5)
E2 12.0 (39.0) 13.0 (31.5) 12.0 (39.0) 12.0 (39.5)
E3 8.0 (47.0) 10.0 (41.5) 8.5 (47.5) 6.5 (46.0)
E4 6.0 (53.0) 6.5 (48.0) 6.5 (54.0) 6.0 (52.0)
E5 5.0 (58.0) 6.0 (54.0) 4.0 (58.0) 4.0 (56.0)
E6 4.0 (62.0) 5.0 (59.0) 3.8 (61.8) 3.5 (59.5)
E7 3.8 (65.8) 4.0 (63.0) 3.6 (65.4) 3.0 (62.5)
E8 3.0 (68.8) 3.0 (66.0) 3.0 (68.4) 2.5 (65.0)

AMJ, April–May–June; JAS, July–August–September; JFM,
January–February–March; OND, October–November–December.

orthogonal function (EOF) analysis, and CCA methods
(e.g. Stone, 1974; Chu and He, 1994) to forecast sea
level on seasonal time scales.

In the combined EOF analysis, the SST and zonal wind
(U) fields are weighted equally. The EOF analyses of
the SST data were carried out to minimize problems
of collinearity and generate independent, contiguous
SST and wind indices. Leading EOFs are selected as
independent variables for the subsequent CCA model.
The leading EOFs of SST and wind anomalies (X-
EOFs) were calculated for each season. Other than the
first three modes, the hindcast skill is less sensitive
to the number of EOFs retained. In our analyses, a
total of eight eigenmodes were chosen for the SST
and U in the CCA model and the optimal numbers of
EOFs (maximum five) were retained based on the cross-
validated skill (goodness index) (Table 1). The EOFs for
SST and wind analysis explained 65–69% of the total
variance (Table 1) and the EOFs for sea levels (Y-EOFs)
provided 88–94% of the total variance, with the first
three modes retained (Table 2). The percent of variance
explained in April–May–June (AMJ) SST (X-EOFs) is
18.5, which is relatively weak as compared with other
seasons (Table 1). One possible reason for this weak
variance could be related to the effect of the spring
predictability barrier due to the interaction between SST
and wind that might have eroded the signal of hindcast.
Therefore, the leading modes did not account for the
large percentages of variance. The signal is spread among
the first few modes instead of being concentrated in the
major leading one. For example, in this case, SST EOF3
for AMJ explained 10% of the variance, which is higher
than the corresponding values for all other seasons’ EOF3
(Table 1).

CCA analysis is performed to identify the optimal
coupled anomaly pattern relationship between local and
large-scale spatial patterns. This analysis has been found
to be a popular statistical method for climate fore-
casts on month-to-seasonal time scales (e.g. Barnett and
Preisendorfer, 1987; Chu and He, 1994; Barnston and
He, 1996; Cherry, 1996; Yu et al., 1997). CCA anal-
ysis allowed us to investigate the relationship between

Table 2. Percent of variance explained by eigenvectors (Ek/sea
level) for sea levels (values in parentheses are cumulative

variance by the k largest eigenvalues).

Ek/sea
level

JFM sea
level

AMJ
sea level

JAS sea
level

OND sea
level

E1 55.0 (55.0) 65.0 (65.0) 76.0 (76.0) 74.0 (74.0)
E2 18.0 (73.0) 16.0 (81.0) 13.0 (89.0) 12.0 (86.0)
E3 15.0 (88.0) 8.0 (89.0) 5.0 (94.0) 8.0 (94.0)

AMJ, April–May–June; JAS, July–August–September; JFM,
January–February–March; OND, October–November–December.

two sets of basis vectors, one for x and the other for
y such that the correlation between the projections of
the variables onto these basis vectors are mutually maxi-
mized. In this case, the basic vectors are SST and winds
(x ) and sea level (y). The hindcast skill of the CCA
model for 1975–2011 is estimated using a cross-validated
scheme with 1 year withheld. Auto-correlations in the
sea-level data are generally found to be small (<0.1) and
withholding 1 year is justified for low auto-correlations.
Therefore all available data were used except those
data for the season for which the prediction was tar-
geted. The climatology is recomputed and the anomaly
of the target year is redefined in terms of the means
of the other years (since January 2013, forecasts are
prepared based on 1983–2001 climatology). By doing
this repeatedly, we obtain 36 forecasts of sea level,
which were compared with the observed sea level. The
Climate Predictability Tool (CPT) software (available
at http://iri.columbia.edu/outreach/software/) was used to
generate CCA hindcast results.

3. Results and discussions

3.1. EOF analysis of SST, wind, and sea-level records

The principal loading patterns of SST and U anoma-
lies for EOF1 and EOF2 are presented in Figures 2
and 3, and the time-dependent coefficient of the com-
bined SST and U is shown in Figure 4. The corre-
sponding canonical component time-series are shown in
Figure 5. The spatial pattern of X-EOF1 for SST (X Spa-
tial Loadings: Mode 1) (Figure 2) resembles those of
the leading eigenmodes presented in past studies (e.g.
Kawamura, 1994 and references therein). For X-EOF1,
which described aspects of ENSO, negative loadings exist
over the tropical western Pacific extending to the sub-
tropical latitudes, and large positive loadings exist over
the central and eastern equatorial Pacific (Figure 2, left
panel). In this mode EOF1, the large positive loadings
over the central and eastern equatorial Pacific and rel-
atively weak loading in the tropical Indian Ocean (not
shown in Figure 2) resemble slightly different features
from other similar studies (e.g. Hsiung and Newell 1983;
Nitta and Yamada, 1989). Furthermore, it can also be seen
in this mode that negative loadings over the central North

 2013 Royal Meteorological Society Int. J. Climatol. 34: 2320–2329 (2014)



AN IMPROVED SEA LEVEL FORECASTING SCHEME 2323

(a) JFM_SST (EOF1) 

(b) AMJ 

(c) JAS 

(d) OND 

X Spatial Loadings (Mode 1); Field: sst

135E 180 135W

135E 180 135W

135E 180 135W

135E 180 135W

X Spatial Loadings (Mode 1); Field: u

-0.90 -0.60 -0.30 0 0.30 0.60 0.90

135E

0

35
S

35
N

180 135W

135E

0

35
S

35
N

180 135W

135E

0

35
S

35
N

180 135W

135E

0

35
S

35
N

180 135W

Figure 2. The principal loading patterns of SST (left panel) and U (right panel) anomalies for EOF1 (latitude 35◦N–35◦S, longitude
100◦E–100◦W).

Pacific around 20◦ –30◦N are not very dominant, particu-
larly for July–August–September (JAS). Thus, it is con-
cluded that this mode accounts for the fundamental SST
fluctuations over the equatorial Pacific and is not very
strongly linked to those over the tropical Indian Ocean
or the central North Pacific, as in Kawamura (1994). The
spatial pattern of EOF2 for SST (X Spatial Loadings:
Mode 2) (Figure 3, left panel) shows some noteworthy
differences to that of the corresponding EOF1 (Figure 2)
and EOF3 (not shown). In EOF2 (Figure 3(a)–(c), left
panel), large positive loadings are located over the west-
ern Pacific and the South China Sea, whereas negative
loadings exist in the mid-latitude of the North Pacific.
Also, weak positive loadings exist in low-latitude regions
of the eastern and central Pacific.

X-EOF1 for the zonal wind component (U)
(Figure 2, right panel) is associated with an enhanced
divergence anomaly over the Maritime Continent. This
is reflected by the lower tropospheric easterly wind
anomalies across the Indian Ocean and Maritime Conti-
nent and westerly anomalies over the equatorial central
Pacific (note the sign in EOF patterns is arbitrary).
EOF2 (Figure 3, right panel) is associated with enhanced
convergence across the tropical Pacific Ocean. Lower
tropospheric westerly (easterly) zonal wind anomalies
are found across the eastern Maritime Continent and
western Pacific Ocean (Central Pacific Ocean). One
notable observation is that while both the EOF1 and
EOF2 described aspects of ENSO, the EOF2 in JAS
and October–November–December (OND) are slightly
different from those of January–February–March (JFM)
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Figure 3. The principal loading patterns of SST (left panel) and U (right panel) anomalies for EOF2 (latitude 35◦N–35◦S, longitude
100◦E–100◦W).

and AMJ (Figure 3), which could be a reason why
ENSO is much better defined in OND than in AMJ.
EOF2 also shows a pattern of global warming (i.e. JAS
and OND) as the weight is growing over time (Figure 4)
(also see Trenberth and Stepaniak, 2001).

The temporal variability of EOF1 (for SST and U)
coincides quite well with the occurrence of ENSO events
having a quasi periodicity of 2–5 years (Figure 4). From
the time-dependent EOF coefficients, major and moder-
ate years of El Niño such as 1982–1983, 1997–1998,
and 2009–2010 stand out. There is also an indication of
interdecadal variability in the EOF1 time-series, particu-
larly in AMJ and JAS SST modes. However, an expanded
El Niño signal (well off the tropics) is visible in EOF1
(Figure 2) which could be a mixture of El Niño and

Pacific Decadal Oscillation (PDO). The PDO is a basin-
wide pattern of SST consisting of two phases, each com-
monly lasting 10–30 years (Mantua et al., 1996). More-
over, the PDO signal is more evident in the mid latitude,
in contrast to ENSO’s tropical signal.

Time-series of eigenvector coefficients for the second
mode is in contrast with that of EOF1 (Figure 4). For
AMJ, JAS, and OND they exhibit a long-term upward
trend with a pronounced signal in the last 20 years.
Similar features have also been found in Kawamura
(1994) and Allan and Slingo (2002). The SST EOFs in the
current SST-U-based model and the previous SST-based
model corresponded well, particularly in the western
Pacific region; however, the only noteworthy difference
observed is a cooling trend in the current modes over the
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South China Sea in this study (Figures 2 and 3) (SST-only
EOFs are not discussed in detail as they are available in
Chowdhury et al., 2007b).

3.2. CCA model forecast and hindcast skill

Table 3 provides SST-based cross-validation correlation
skills for zero season lead forecasts for the USAPI
stations. Table 4 provides the same analysis with the
wind (U) component. To compare with our new forecasts
scheme, Table 5 provides combined SST and wind-
based (henceforth, SST-Wind or SST-U synonymously
used) correlation skills also at zero season lead-time.
Regardless of SST-, U-, or SST-U-based methods, sea
level forecasts for all the four seasons are reasonably
well predicted using the CCA model (Tables 3, 4, and
5). Out of the seven USAPI stations, the average skills
of zero-season lead forecasts for six of the stations
(i.e. except Pago Pago) are found to be above 0.644.
Both the SST- and U-based forecasts are found to be
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in parenthesis).

equally skillful; however, some stations are shown to
have better skill with the SST-only variable (i.e. Majuro,
Pago Pago), while others tended to show better skill with
the U variable (i.e. Guam, Malakal, Yap, Pohnpei, and
Kwajalein). It is noteworthy that, as compared with SST-
or U-based forecasts, the SST-U-based forecasts display
improvements on the zero-season lead-time, particularly
for Malakal, Majuro, and Pago Pago. The links between
CCA-X (combining both SST and U) and CCA-Y for
EOF1 and EOF2 are shown in Figure 5. Both of the
time-series corresponded very well for all four seasons
with canonical correlations greater than 0.869 for EOF1
and 0.743 for EOF2.

It is evident that there has been an improvement with
the SST-U-based forecasts in all zero to three seasons’
lead-times. It is also noteworthy that while at zero lead
SST- and U-based forecasts are equally skillful, the skill
level of U-based forecasts gradually increased relative to
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Table 3. SST-based CCA cross-validation skill for four seasons (zero-season lead-time).

Predictor
(SST) period

Target season
(sea level)

Guam Malakal Yap Pohnpei Majuro Kwajalein Pago-Pago

JFM AMJ 0.668 0.578 0.732 0.793 0.710 0.598 0.765
AMJ JAS 0.617 0.715 0.627 0.684 0.631 0.450 0.786
JAS OND 0.771 0.840 0.837 0.854 0.756 0.805 0.485
OND JFM 0.797 0.808 0.781 0.831 0.705 0.722 0.754
Average 0.713 0.735 0.744 0.791 0.701 0.644 0.698

AMJ, April–May–June; JAS, July–August–September; JFM, January–February–March; OND, October–November–December. All values are
significant at 1% level. Note that lead time is the time interval between the end of the initial period and the beginning of the forecast period.
Also note that forecasts are thought to be of useful skill (or at least fair skill) if the CCA cross-validation value is greater than 0.3. Higher skills
correspond to greater expected accuracy of the forecast.

the SST-based forecast as the number of leading seasons
increased. This is an interesting finding that we would
like to study further in the foreseeable future. At this
stage, subsequent discussions are limited to the combined
SST-U-based and SST-based forecasts only, the latter
being the traditional sea level forecast approach.

Figure 6 shows average CCA cross-validation hind-
cast skills for four seasons (i.e. JFM, AMJ, JAS, and
OND) for each of the USAPI stations at zero to three sea-
sons’ lead-times. The percentage of improvement is also
shown by the dotted line. As indicated, different islands
show different levels of predictive skill. As compared

with SST-based forecasts, the SST-Wind-based forecasts
displayed marginal to moderate improvements at zero
season lead-time for all stations. At a one-season lead,
besides showing a marginal improvement for Pohnpei,
and a marginal decline for Pago Pago, all other stations
displayed considerable improvements. At two- and three-
season leads, the quality of forecasts improved consider-
ably (e.g. 10–25%) for all stations, with the exception
of Guam and Pago Pago at the two-season lead and
Majuro at the three-season lead. It is noteworthy that
the lone South Pacific Island, Pago Pago, did not show
much improvement in the SST-U-based model. However,
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previous season (e.g. OND, also see Tables 3–5). Similarly, one-, two-, and threee-season lead-time means sea level forecasts based on SST-U

and SST of the previous JAS, AMJ, and JFM seasons. Percent of improvement is shown by the dotted line.

Table 4. Wind (U)-based CCA cross-validation skill for four seasons (zero-season lead-time).

Predictor
(zonal wind) period

Target season
(sea level)

Guam Malakal Yap Pohnpei Majuro Kwajalein Pago-Pago

JFM AMJ 0.646 0.550 0.712 0.798 0.592 0.627 0.692
AMJ JAS 0.683 0.833 0.848 0.868 0.710 0.804 0.562
JAS OND 0.828 0.881 0.891 0.870 0.754 0.808 0.192
OND JFM 0.792 0.821 0.849 0.855 0.668 0.802 0.669
Average 0.737 0.771 0.825 0.848 0.681 0.760 0.529

AMJ, April–May–June; JAS, July–August–September; JFM, January–February–March; OND, October–November–December. All values are
significant at 1% level. Note that lead time is the time interval between the end of the initial period and the beginning of the forecast period.
Also note that forecasts are thought to be of useful skill (or at least fair skill) if the CCA cross-validation value is greater than 0.3. Higher skills
correspond to greater expected accuracy of the forecast.
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Table 5. SST and wind (SST-U)-based CCA cross-validation skill for four seasons (zero-season lead-time).

Predictor (SST-
Wind) period

Target season
(sea level)

Guam Malakal Yap Pohnpei Majuro Kwajalein Pago-Pago

JFM AMJ 0.669 0.625 0.735 0.761 0.755 0.654 0.789
AMJ JAS 0.644 0.812 0.740 0.793 0.750 0.605 0.717
JAS OND 0.819 0.880 0.887 0.885 0.775 0.830 0.558
OND JFM 0.809 0.817 0.803 0.861 0.737 0.754 0.758
Average 0.735 0.784 0.791 0.825 0.754 0.711 0.706

AMJ, April–May–June; JAS, July–August–September; JFM, January–February–March; OND, October–November–December. All values are
significant at 1% level. Note that lead time is the time interval between the end of the initial period and the beginning of the forecast period.
Also note that forecasts are thought to be of useful skill (or at least fair skill) if the CCA cross-validation value is greater than 0.3. Higher skills
correspond to greater expected accuracy of the forecast.
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Figure 7. Average forecast skills for all seven USAPI stations for seasons JFM, AMJ, JAS, and OND at zero to three seasons-lead. Percent of
improvement is shown by the dotted line.

at this stage, further diagnostic discussion on why the
skill at longer lead-times has increased substantially in
the combined SST-U-based model for all stations except
Pago Pago is beyond the scope of this study.

On the basis of SST-Wind predictors, the average skill
of zero to three seasons lead forecast for seasons JFM,
AMJ, JAS, and OND are found to be 0.638, 0.684, 0.664,
and 0.604, respectively (Figure 7). These forecasts are
6, 18, 7, and 2.5% higher than the similar SST-based
forecasts. Among the four seasons, SST-Wind of AMJ
and JAS exhibited the highest skill. AMJ provides 18 and
26% better forecasts on two- and three-season lead-time
relative to the SST-based forecasts. JAS provides 10
and 12% improvement on the same seasonal time-scale.
These results suggest that the addition of U in our model
significantly improves the sea level predictability of AMJ
and JAS on longer time-scales. For example, it can be
stated here that the average JAS SST-based hindcast skill
for two- and three-season lead (for AMJ and JAS seasons)
are low (0.534 and 0.457, Figure 7). With the addition
of U in the CCA model, the average skill has increased
significantly to 0.588, 0.510, respectively, showing a 11
and 12% increase. Similarly, the addition of wind in
the model also improved the OND SST-based forecast
skill 8% for the JAS season (Figure 7). To show the
improvement of hindcast skill in JAS, the observation
and cross-validated hindcast time-series of sea level

forecasts for Yap is shown in Figure 8. As compared
with SST-based forecasting skill (0.335), the SST-U-
based forecasting skill (0.496) displayed considerable
improvement. Guam and Pohnpei also displayed similar
improvements (not shown in Figure 8).

As compared with Chowdhury et al., (2007b), where
JAS displayed a weaker predictability that seemed to be
an impact of the spring predictability barrier (Jin et al.,
2008), we observed an improved predictability here for
the JAS season. The addition of the wind parameter in
the model appears to reduce the impact of the spring
predictability barrier and increases the hindcast skills con-
siderably. While Yu et al., (1997) found it to be very diffi-
cult to generate accurate rainfall forecasts for the USAPI
using the spring SSTs as predictors, our current findings
show that the combination of spring SST and wind do
yield a higher skill for sea level forecasts for the USAPI
region. The likely reason that JAS has better predictabil-
ity is because ENSO responses are most pronounced dur-
ing the boreal winter as the Pacific SST and surface pres-
sure anomalies are more likely to be in phase and reach
their peaks during the antecedent boreal winter/spring.

3.3. A synopsis of enhanced trade winds

The pronounced sea level rise in recent years can
partly be attributed to the enhanced trade winds. A
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Figure 8. Observation (firm line) and cross-validated hindcast (dotted
line) time-series for JAS sea level forecasts for Yap at three-seasons
lead. SST-based results are shown in top panel (skill: 0.335) and SST-

U-based results are shown in (bottom panel) (skill: 0.496).

determination of the underlying atmospheric and oceanic
interactions responsible for the shift of this trend is
beyond the scope of this study. Nevertheless, a review
of available literature (Merrifield, 2011; Merrifield and
Matrud, 2011 and references therein) provides a rich
perspective on this issue. In studying the multidecadal
increase of Pacific trade winds, Merrifield (2011)
considered a number of possible connections, such as
the dominant sea level trends associated with the timing
and amplitude of interannual ENSO events over the
short record, or with longer time-scale climate modes
such as the PDO or the North Pacific Gyre Oscillation
(NPGO) (Di Lorenzo et al., 2008). From 1993 to 2001,
the reconstruction indicates high rates of sea level rise
in the western Pacific, similar to that shown by Church
and White (2006). Merrifield (2011) concluded that the
pattern reflects a shift from weak El Niño conditions
early in the record to more La Niña conditions in
2001. Since then, the Pacific atmospheric and oceanic
conditions have remained in a La Niña mode (Barnston
2012; pers. comm.).

Merrifield (2011) further added that the poor corre-
spondence between sea levels and the PDO suggests that
the primary wind anomalies associated with the PDO at
decadal and interdecadal time scales are too far north
to impact sea levels in the WTP and northeast Pacific

(NEP) regions. However, as concluded, the positive
phase of the NPGO corresponds to increased easterly
trade winds, mid-latitude westerlies, and northerly
winds in the NEP south of 40 N. These wind patterns
contribute to a positive sea level anomaly response in the
WTP and negative in the eastern tropical Pacific (ETP)
and NEP via local forcing and longwave propagation,
which matches the positive and negative correlations
between the NPGO index and NEP and WTP sea levels,
respectively (Merrifield, 2011).

4. Conclusions

The CCA model provides useful skill in predicting
sea level in the Pacific Islands. The current SST-based
CCA model forecasts (3–5 months lead-time) are well
accepted by our clients at the USAPI region. However,
the improved SST-Wind-based model forecasts produce
more skillful products on the same time scales, partic-
ularly for the islands of Yap, Pohnpei, Majuro, Kwa-
jalein, and American Samoa (Pago Pago) in the USAPI
region. On 6–12 months lead-time, the SST-Wind-based
forecasts provided more skillful results when compared
with current SST-based forecasts. All stations showed
considerable improvement. One plausible explanation
for the success of adding the wind is the impact of
ocean–atmosphere coupling. The SST alone may not
always reflect this coupled mode. The SST reveals some
of the sea level rise due to thermal expansion; the wind
shows the surface stress contribution to sea level rise.
With ENSO, the SST is usually present when the wind
component is present, but the wind component is not
always present when the SST is present. Therefore, the
combination of SST and wind predictors offers additional
advantages in sea level forecasting on longer time-scales.

While PEAC’s current dissemination of sea level
products is limited to 3–5 months lead-time, the
improvement will enable PEAC to produce products
with a 6–12 months lead-time. These products will
specifically address a critical need of our clients: to
more effectively conduct coastal hazards management in
the USAPI region with the aid of longer, more accurate
sea level predictions.
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