Pacific Region ENSO UPDATE AND SEASONAL OUTLOOK

January 18 2018

PREPARED BY THE PEAC CENTER

Principal Scientist: Dr. Rashed Chowdhury

Pacific Region Climate Officer: LTJG Joseph Brinkley

Tropical Cyclone Specialist: Mark Lander

Graduate Assistant: Alejandro Ludert

What Is El Niño and La Niña

A general description of ENSO and their global impacts

General Location of Major Climate Variability System

PDO: 210712: -0.18, 199710: +1.63, 199810: -1.4

Map adapted from Wikimedia Commons

IOD: 201712: neutral, <u>1997: +ve</u>,1998: -ve

El Niño/La Niña -Southern Oscillation (ENSO)

(Develops in JAS, strengthen through OND, and weakens in JFM)

- El Nino—major warming of the equatorial waters in the Pacific Ocean
 - The anomaly of the SST in the tropical Pacific increases (+0.5 to +1.5 deg. C in <u>NINO 3.4 area</u>) from its long-term average;
 - A <u>high pressure region</u> is formed in the <u>western Pacific</u> and <u>low-pressure</u> <u>region</u> is formed in the <u>eastern Pacific</u> —this produces a negative ENSO index (SOI negative).
- La Nina—major cooling of the equatorial waters in the Pacific Ocean
 - The anomaly of the SST in the tropical Pacific decreases (-0.5 to -1.5 deg. C in <u>NINO 3.4 area</u>) from its long-term average;
 - A <u>high pressure region</u> is formed in the eastern Pacific and <u>low-pressure</u> <u>region</u> is formed in the western Pacific—this produces a positive ENSO index (SOI positive).

El Niño and La Niña

6 out of the 8 El Niño events since 1979 have transitioned to La Niña conditions.

El Nino to La Nina transition

La Niña-Rainfall

DJF: Wet over northern South America and Southern Africa/ and Dry along coastal Ecuador, northwestern Peru and equatorial eastern Africa

JJA: Wet over southeastern Australia /Dry over southern Brazil and central Argentina.

High Posalution Imagos can be found at

Rainfall is enhanced across the western equatorial Pacific— Indonesia and the Philippines

ENSO and Tropical Cyclones

corr Jul-Jun averaged NINO3.4 index with Jul-Jun averaged MIT #TS tracks 1856:2004

El Niño shifts TC genesis Eastward over the North and South Western Pacific

- Less TC activity
 - Australia
 - Philippines
- More TC activity
 - Tropical Pacific
 - Hawaii
 - American Samoa

From the Royal Netherlands Meteorological Institute http://www.knmi.nl/research/global_climate/enso/effects/

Summary of historical global impact of La Niña and El Niño

	Summary of Historical Impacts								
	LaN	liña	El Niño						
	Jun-Aug	Dec-Feb	Jun-Aug	Dec-Feb					
Wetter	India, Malaysia, Indonesia, Central America, Sahel, southern Australia	Indonesia, Malaysia, Australia, northern South America, southern Africa	central Pacific, central Chile, western United States (US)	South America (Ecuador, northwestem Peru, southern Brazil, central Argentina, Uruguay), equatorial East Africa, northern Mexico/southern					
Drier	central Pacific, Uruaguay, eastern Argentina, central Chile	central Pacific, Ecuador, East Africa, southern India	India, Indonesia, Malaysia, eastern Australia, Sahel, southern Africa, northern South America	Australia, Indonesia, the Philippines, northern South America, southern Africa					
Warmer	Papua New Guinea, eastern Indonesia	southern US	west coast of South America, southern Brazil, Central America	South East Asia, southern Africa, Japan, southern Alaska and western/ central Canada, southeastern Brazil and southeastern Australia					
Colder	West Africa, southeast Asia, western South America	West Africa, Japan, eastern Brazil, southern Alaska and western/ central Canada	southern Pacific, New Zealand	Gulf coast of US					

CURRENT CONDITIONS

General State of the Ocean and Atmosphere

Recent Evolution of Equatorial Pacific SST Departures (°C)

During January and February 2017, above-average SSTs expanded in the eastern Pacific Ocean.

From mid April to July 2017, near-toabove average SSTs spanned most of the equatorial Pacific.

During August 2017, above-average SSTs dissipated east of the date line.

Since September 2017, negative SST anomalies have generally persisted in the central and eastern equatorial Pacific.

The latest weekly SST departures are:

Niño 4	-0.1°C
Niño 3.4	-0.8°C
Niño 3	-1.4°C
Niño 1+2	-0.8°C

Current State of ENSO (SST)

ENSO Alert System Status: La Niña Advisory

- A weak La Niña event continues, along with its climate impacts around the world. SST at NINO3.4 region is -0.8°C
- La Niña is likely (~85-95% by CPC-IRI) (72% by NIWA) through Northern Hemisphere winter, with a transition to ENSO-neutral expected during the spring.

CPC/IRI ENSO Forecast

CPC/IRI EL NIÑO/SOUTHERN OSCILLATION (ENSO) DIAGNOSTIC DISCUSSION

Expected Conditions

- The forecaster consensus favors La Niña continuing through the December-February season
- Rapidly returning to neutral

Climate Prediction Center NOAA/National Weather Service College Park, MD 20740

Early-Jan CPC/IRI Official Probabilistic ENSO Forecasts

CPC/IRI Early-Month Official ENSO Forecast Probabilities

Season	La Niña	Neutral	El Niño
DJF 2018	97%	3%	0%
JFM 2018	85%	15%	0%
FMA 2018	63%	36%	1%
MAM 2018	46%	50%	4%
AMJ 2018	34%	58%	8%
MJJ 2018	26%	58%	16%
JJA 2018	25%	53%	22%
JAS 2018	22%	52%	26%
ASO 2018	23%	49%	28%

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/

CPC/IRI ENSO Forecast

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-cpc_update http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table http://iri.columbia.edu/ourexpertise/climate/forecasts/enso/current/?enso_tab=enso-iri_update http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-sst_table

CPC/IRI EL NIÑO/SOUTHERN OSCILLATION (ENSO) DIAGNOSTIC DISCUSSION

Expected Conditions

Models favor weak La Niña conditions continuing through winter 2017-2018

Quickly returning to neutral

 Predictions are for a weak event throughout

Climate Prediction Center National Centers for Environmental Prediction NOAA/National Weather Service College Park, MD 20740

Average Niño 3.4 SST Anomaly Forecast							
	JFM	FMA	MAM				
Dynamical	-0.7	-0.6	-0.4				
Statistical	-0.6	-0.5	-0.4				
All Models	-0.7	-0.5	-0.4				

ENSO Situation Summary

- Atmospheric La Niña signals have weakened in December 2017, and SOI is slightly negative with -0.2 for December 2017;
- La Niña conditions are likely (72% chance) to persist over JFM of 2018;
- La Niña is likely to decay rapidly during AMJ of 2018;
- ENSO-neutral conditions is most likely (74% chance) over AMJ of 2018 period.

https://iri.columbia.edu/news/november-climate-briefing-la-nina-makes-itofficial/

https://www.facebook.com/climatesociety/videos/1098793830256505/

Dec 27: <u>https://iri.columbia.edu/news/december-climate-briefing-new-year-same-la-nina/</u>

Impacts

- Quick recap of the 2017/2018 La Niña
- Current conditions for
 - Rainfall
 - Sea Level
 - Tropical Cyclones
 - Societal Impacts

Global impacts of La Niña

La Niña years have clearly shown greater average annual losses in comparison to El Niño and Neutral phases.

- La Niña USD77 billion
- El Niño USD45 billion

Much of the increase in losses during a La Niña year surrounds

- Increased frequency of costly landfilling tropical cyclone events in the Atlantic Ocean basin
- Increased flooding events across Asia Pacific

Source: Aon Benfield 2015 Annual Climate and Catastrophe report.

La Niña and Winter

WINTER LA NIÑA PATTERN

Because of La Nina, 2017 fall and winter weather pattern may turn out to be "drier fall and snowier winter across the NORTH, and drier winter across the SOUTH".

America battles EXTREME cold and ice in January 2018: **Bomb cyclone then bitter cold**

 La Niña and shift of Arctic Circulation are the reason for this freezing weather.

Bomb cyclone is beginning of a 100 year GLOBAL COOLING period???

What is the Polar Vortex?

- Large area of low pressure and cold air near the poles weakens in summer and strengthen and expands in winter sending cold air southward with the jet stream;
- "vortex" refers to the counter-clockwise flow of air that helps keep the colder air near the Poles;

- Since 2000, the Jet stream is <u>WEAKENING/began</u> <u>slowing down</u>its waves meandering more;
- When this happens, Arctic air drops south, and sometimes very far south.

Colder outbreaks in 1977, 1982, 1985 and 1989 and January 2014

Global Monthly Precipitation Anomaly

Drought Condition

Drought impacts to the USAPIs

U.S. Drought Monitor

- Hydrological drought conditions have ended in the last couple of months
 - Water supply no longer a concern
 - Food security will take more time to recuperate

Sea Level Observation

> Sea Levels have been

Jason-3 Sea Level Residuals DEC 7 2017

Synopsis of 2-years of SLV and Forecasts

- Rise from JAS-2015 and continued up to JAS 2016
- Fall from OND-2016 and stayed marginally below average in JFM-2017
- Rise again from June-2017 and currently staying above average
- Likely to stay 5-8 inches above normal up to JFM of 2018

High-Tides and Inundation pictures in Pohnpei & Kosrae on December 4 -5 (PC: Wallace Jacob, WSO-Pohnpei)

Damaged roads in Kosrae

2017 Northern Hemisphere Tropical Cyclone Activity (through October), by basin and with hemisphere totals

Basin	Named Storms	Days	Hurri/ Typh	Days	Major Hurri	Days	ACE**
Natl	16 (11)	89 (55)	10 (6)	51 (22)	6 (3)	19 (6)	224 (99)
ENP	18 (16)	66 (72)	9 (8)	20 (29)	4 (4)	5 (9)	98 (130)
WNP	22 (23)	85 (119)	11 (15)	36 (58)	4 (8)	6 (20)	144 (259)
NIO	2 (3)	4 (8)	1 (1)	0.3 (2)	0 (0.5)	0 (0.7)	4 (11)
NHem	58 (54)	244 (255)	31(31)	107(112)	14 (15)	30 (35)	469 (500)

**ACE is proportional to the square of the wind speed.

• Throughout 2017, there was a <u>westward & northward</u> displacement of the TC activity, *which is consistent with the development of La Niña*

2017 Atlantic hurricane season (Preliminary damage is over \$369.86 billion)

- The 2017 Atlantic hurricane season was a <u>hyperactive</u>, deadly, and extremely destructive <u>season</u>, featuring 16/17 named storms, ranking alongside <u>1936</u> as the <u>fifth-most active season</u> since records began in 1851.
- 0
- The season also featured both the highest total <u>accumulated</u> <u>cyclone energy (ACE)</u> and the highest number of major hurricanes since <u>2005</u> with major hurricanes — <u>Harvey</u>, <u>Irma</u>, and <u>Maria</u>.
- Ο
- This season is also <u>one of only six years</u> on record to feature multiple Category 5 hurricanes, and only the second after <u>2007</u> to feature two hurricanes making landfall at that intensity.
- Ο
- This season is the only season on record in which three hurricanes each had an <u>ACE</u> of over 40: Irma, <u>Jose</u>, and Maria.

Hurricane Harvey

 Harvey was the first <u>major hurricane</u> (Cat 4: 134 mph) to make <u>landfall</u> in Texas on Aug 29-30 since <u>Wilma</u> ('05)

- Harvey was the costliest <u>tropical cyclone</u> on record, inflicting nearly \$200 billion (2017 USD) in damage;
- As of September 14, 2017, at least 82 people have died.

Hurricane Irma

 Irma was another <u>major hurricane</u> (Cat 5: 185 mph) to make <u>landfall</u> in Florida on Sep 10-11.

Hurricane Irma is the strongest Atlantic basin hurricane ever recorded outside the Gulf of Mexico and the Caribbean Sea. Damage: US \$ 67 Billion

Hurricane Maria

Hurricane Maria (Cat 5: 175 mph) was regarded as the worst natural disaster on record in <u>Dominica</u> and <u>Puerto Rico</u>. It made landfall in Dominica on Sep 18.

Damage: \$103.45 billion (2017 USD) Fatalities: 547

- - Hurricane Jose: was a powerful longestlived <u>Atlantic hurricane</u>
 - Hurricane Katia struck the east coast of Mexico as a Category 1 storm

Why Hurricane Season was so Intense?

- **o** Atmosphere was Hurricane friendly
- ENSO neutral—improving Atlantic Hurricane prospects
- Tropical Atlantic was exhibiting high "thermal potential"—meaning water can rapidly evaporate to atmosphere
- SST was warmer than average
- As the world warms, evaporation speeds up. So on average there's more water vapor for a storm to sweep up and dump now, compared to 70 years ago
- o —global warming is making a bad situation worse???

Global warming is making a bad situation worse

- Harvey benefited from unusually toasty waters in the **Gulf of Mexico**
- As the storm roared toward Houston, sea-surface waters near Texas rose to between 2.7 -7.2 ^oF above average.
- The tropical storm, feeding off this unusual warmth, was able to progress from a tropical depression to a category-four hurricane in roughly 48 hours.

Atlantic Sea Surface Temperature Anomaly, August 23, 2017

RTG SST HR Anomaly (0.083 deg X 0.083 deg) for 23 Aug 2017 NOAA/NWS/NCEP/EMC Marine Modeling and Analysis Branch Oper H.R.

Harvey intensified rapidly amid sea surface temperatures in the Gulf of Mexico up to 2.7 - 7.2°F (1.5 - 4°C) above average, relative to a 1961-1990 baseline.

2017: The year of hurricanes, wildfires and floods

http://www.thedailystar.net/onlinespecial/2017-theyear-hurricanes-wildfires-and-floods-1514830.html

Forecast

ENSO forecasts

Rainfall, Sea level, Tropical Cyclones and Coral Bleaching

Rainfall Forecasts (Typical effects of La Niña)

- > Above-avg rains in Philippines, Indonesia and in southern America
- Below-avg rains in Greater Horn due to weak response of IOD (+ more rains)
- Above-avg rains in northern Europe, Asia, parts of the interior U.S. and Alaska
- Strong drier-than-normal in the southern U.S and central to northern Mexico
- Drier-than-normal in parts of South America, south Africa, central and eastern Asia, as well as smaller, scattered areas around the world....

		Rasinfall	forecast	<mark>s for .IF</mark>	M 2018						
	Location	UKMO	ECMWF	CA	NASA	NCEP	IRI	APCC	PEAC CCA	Rainfall	Final
										Outlook	Probs
USAFI.	Palau										
Rainfall	Koror 7°	Above	Above	Avg-above	Avg.	Avg-above	Above	Above	Above	Avg-Abv	30:35:35
c											
torecast	FSM										
by	Yap 9° 2	Above	Above	Above	Avg.	Above	Above	Above	Above	Average	30:40:30
Dy	Chuuk 7°	Above	Above	Above	Avg-below	Above	Avg.	Avg.	Above	Avg-Abv	30:35:35
PFAC	Pohnpei	Avg-above	Above	Above	Below	Above	Avg.	Avg.	Above	Avg-Abv	30:35:35
	Kosrae 5	Avg.	Above	Above	Below	Above	Avg.	Avg.	Clim.	Avg-above	30:35:35
	RMI										
	Kwajaleii	Avg.	Above	Above	Below	Above	Avg.	Below	Above	Average	30:40:30
	Majuro 7	Avg-above	Above	Avg-above	Below	Avg-above	Below	Below	Above	Avg-above	30:35:35
	Guam and	d CNMI									
	Guam 13	Above	Above	Avg-above	Avg-above	Avg-above	Above	Above	Above	Average	30:40:30
	Saipan 1	Above	Above	Avg-above	Avg-above	Avg-above	Avg-above	Above	Above	Average	30:40:30
	American	Samoa									
	Pago Pago	Avg-above	Above	Avg-above	Avg.	Avg-above	Avg.	Avg.	Avg-above	Avg-above	30:35:35
	State of H	Iawaii									
	19.7° - 21	.0' N, 155.0° -	159.5' W								
	Lihue	Avg.	Above	Avg-above	Avg.	Avg-above	Above	Avg.	Above	Avg-above	30:35:35
	Honolulu	Avg.	Above	Avg-above	Avg.	Avg-above	Above	Avg.	Above	Average	30:40:30
	Kahului	Avg.	Above	Avg-above	Avg.	Avg-above	Above	Below	Above	Avg-above	30:35:35
	Hilo	Avg.	Above	Avg-above	Avg.	Avg-above	Above	Below	Avg-above	Avg-above	30:35:35

Seasonal Sea level forecasts: USAPI

Observed and Forecasts of MEAN anomaly for JFM/2018 Season (in INCHES)

Tide-gauge	Observed Dec-17	JFM-18 Mean Forecasts	JFM-18 Std_ Dev	JFM-18 Outlook
Guam,	+7	+5	+4.1	Above-Stable
Malakal, Palau	+4	+5	+4.3	Above-Stable
Yap, FSM	+9	+6	+4.6	Above-Stable
Chuuk	+9	+6	+4.4	Above-Stable
Pohnpei	+9	+7	+4.7	Above-Stable
Kapingamarangi	+7	+6	+4.5	Above-Stable
Majuro, RMI	+8	+7	+3.5	Above-Stable
Kwajalein	+6	+6	+3.6	Above-Stable
Pago Pago, AS	+7	+6	+3.1	Above-Stable
Honolulu	+5	+4	+1.7	Above-Falling
Hilo	+6	+5	+1.8	Above-Stable

MEAN is the difference between the <u>mean</u> sea level for the given month and the 1983 through 2001 monthly mean sea level value at each station (seasonal cycle removed);

Seasonal SL Forecasts in the Western Pacific (Feb-Apr 2018)

http://poama.bom.gov.au/experimental/pasap/sla.shtml

Sea Level Forecasts

Tropical Cyclone Forecast

- US Affiliated Pacific Islands ()
 - Tropical cyclone activity will be near average with a westward displacement (Philippine Sea and South China Sea to remain the focus)
 - Below average in the western North Pacific basin
- From climatology, enhanced activity in the Bay of Bengal during La Niña

Tropical Cyclone Forecast

- American Samoa TC (PEAC Center Issued November 28th)
 - November to April TC season
 - American Samoa will be near average to slightly below average
- Australia (Australian BOM Forecast issued October 10th)
 - BoM is calling for near-average to slightly above average
 - NIWA is calling for a slightly above average
 - higher around the Coral Sea and west of the DL, and lower further east

Coral Bleaching Outlook

- High probability of Coral Bleaching across the Pacific Islands
- Western South Pacific Islands may see bleaching in the coming months
- Australia at risk of bleaching events

La Niña and Flu Pandemics

- Worldwide pandemics of influenza caused widespread death and illness in 1918, 1957, 1968 and 2009.
- A new study examining weather patterns around the time of these pandemics <u>finds that each of them was</u> <u>preceded by La Niña conditions</u> in the equatorial Pacific.
- La Niña <u>alters the stopover time, fitness and</u> <u>interspecies mixing of migratory birds</u>, which are thought to be a primary reservoir of human influenza.
- The scientists theorize that <u>altered migration patterns</u> promote the development of influenza.

Summary

- A weak La Niña event continues up to JFM of 2018, and then likely to decay rapidly in AMJ of 2018;
- Above-average rain in USAPIs and Philippines, Indonesia and in southern America, and parts of the interior U.S. and Alaska;
- Below-average rain in Greater Horn, South America, and eastern Asia;
- High sea Level across the Western Pacific FMA 2018;
- TC activity will be near average over the WNP;
- Flu Pandemics in next 3-6 months.

The PEAC Center

The Pacific ENSO Applications Climate Center

Mahalo

Photo courtesy of Lt. Charlene Felkley