The January 30, 2019 Northeast US Snow Squall Event: An Operational Perspective
Jonathan E. O’Brien¹

¹ National Weather Service Weather Forecast Office Mount Holly, NJ

Background

Intense, long lived snow squalls impacted a large portion of the mid-Atlantic and Northeast on 1-30-19

This project performs a case study on this event at NWS WFO Mount Holly, NJ and attempts to draw conclusions for operational best practices regarding snow squalls

Squalls formed on a sharp Arctic front ~24 hours after another cold front/mixed precipitation event

“Prime” front prevented ptype issues: precip was all snow, cold enough for instant accumulation

Optimal environment ahead of Arctic front (~100J CAPE, high RH in BL, strong forcing, lift in DGZ)

Forecast Funnel

Well forecast event! Snow squall potential mentioned in forecast/AFD 4 days ahead of time

Well handled by global and hi-res models, likely due in part to strong forcing

Morning SPS, multiple postings on social media

Messaging challenge due to preceding storm, morning SPS, multiple postings on social media

As it Happened

Squalls too shallow (~7-10kft) to be seen by either KCCX or KDIX radar for an extended period over PA

Dramatic changes in radar appearance even as squall intensity didn’t change; satellite presentation much more consistent

Limited observations (especially ASOS/AWOS) over interior PA, few spotter/public reports, some webcams but of varying use

90 minute “radar drop out” in which squalls became invisible to radar; a long time with convection

How would you feel if you couldn’t see a severe thunderstorm on radar for an hour and a half?

Snow Squall Warnings

2018-2019: First full winter of operational snow squall warnings: forecasters still getting a feel for the product

Differences in how adjacent WFOs handled squalls (SPS vs. SQW); communication important in active weather

Technical problems at PHI prevented SQW issuances

Warnings issued by LWX, unfortunate but unforeseeable; SQW would not have even been an option a year prior

SQW (via LWX) still issued with 30+ minute lead time for Philly/suburbs

Impacts

Widespread 0.5-1” of snow in 20-40 minutes with 1/4 mile visibility and subsequent rapid freeze

Multiple accidents in PA including 27 vehicle fatal pileup on Route 22 in Berks County just after 1PM

Downstream warnings were vital! Less impact in Philadelphia area; widespread social media, broadcast attention as squalls approached the metro area

Lessons and Conclusions

Forecasters must think in a convective mindset when dealing with snow squalls!

Antecedent conditions are critical for squall impact

For shallow squalls, radar has severe limitations; aggressive sourcing of other observations (satellite, webcams, EMS scanners) and ground truth is critical

SQW is a fantastic product! Let’s increase awareness + visibility of it; social media is a great tool for this

We still face challenges with snow squall communication and improving public understanding

References

Schumacher, R. S., D. M. Schultz, and J. A. Knox, 2010: Convective snow bands downstream of the Rocky Mountains in an enviro...

https://doi.org/10.1175/2010WAF2222432.1

Rosenow, D. A., J. Hanson, and G.A. Koss, 2018: R2O: Development of NWS Snow Squall Warnings. Amer. Meteor. Soc. 9...

https://doi.org/10.1175/2010MWR3334.1

https://doi.org/10.1175/2011JAMC2635.1

https://doi.org/10.1175/JAMC-D-13-0111.1

https://doi.org/10.1175/WAF-D-14-00034.1

https://doi.org/10.1175/2010MWR3334.1

https://doi.org/10.1175/WAF-D-10-06.1

https://doi.org/10.1175/WAF-D-07-03.1

https://doi.org/10.1175/2010JAMC2635.1

https://doi.org/10.1175/2010MWR3334.1

Davies-Jones, T. R., and R. S. Schumacher, 2006: The passage of continental cold fronts through the Rocky Mountains: A diagnostic...