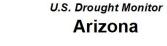
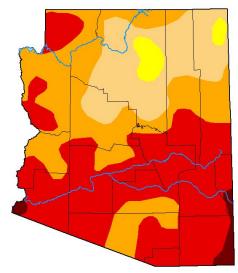


Drought Information Statement for South-Central & Southwest Arizona, and Southeast California Valid June 22, 2025

Issued By: National Weather Service Phoenix Contact Information: nws.phoenix@noaa.gov

- This product may be updated around July 21, 2025
- Please see all currently available products at https://drought.gov/drought-information-statements
- Please visit https://www.weather.gov/psr/DroughtInformationStatement for previous statements
- Please visit https://www.drought.gov/drought-status-updates/?dews-region=130&state=All for regional outlook
- Unusual late spring rainfall allows for localized improvement in drought conditions
- Severe to Extreme Drought continues to affect much of central and western Arizona, as well as southeast California





Link to the latest U.S. Drought Monitor

- SEVERE TO EXTREME DROUGHT CONTINUES ACROSS WESTERN AND CENTRAL ARIZONA
- Drought intensity and Extent
 - D4 (Exceptional Drought): far SW Yuma County
 - D3 (Extreme Drought): southern La Paz, much of Yuma, Maricopa, Gila, and northern Pinal counties
 - D2 (Severe Drought): much of La Paz County and a small part of northern Maricopa County

June 17, 2025

(Released Thursday, Jun. 19, 2025) Valid 8 a.m. EDT

	Drought Conditions (Percent Area)							
	None	D0-D4	D1-D4	D2-D4	D3-D4	D4		
Current	0.00	100.00	97.33	77.85	46.80	1.70		
Last Week 06-10-2025	0.00	100.00	97.33	77.85	47.08	1.70		
3 Month s Ago 03-18-2025	0.00	100.00	99.13	88.02	54.65	7.21		
Start of Calendar Year 01-07-2025	3.74	96.26	76.63	45.54	14.03	0.00		
Start of Water Year 10-01-2024	27.62	72.38	39.91	4.61	0.00	0.00		
One Year Ago 06-18-2024	28.69	71.31	19.98	3.12	0.00	0.00		

None D2 Severe Drought D0 Abnormally Dry D3 Extreme Drought D1 Moderate Drought D4 Exceptional Drought The Drought Monitor focuses on broad-scale conditions.

Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

Brad Rippey

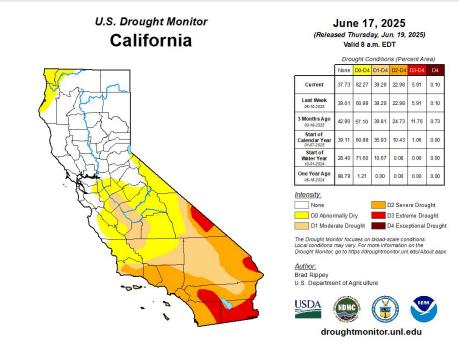
U.S. Department of Agriculture

droughtmonitor.unl.edu

Image Caption: U.S. Drought Monitor valid 5 am MST June 17, 2025

Link to the <u>latest U.S. Drought Monitor</u>

- MODERATE TO EXTREME DROUGHT CONTINUES THROUGH SOUTHERN CALIFORNIA
- Drought intensity and Extent
 - D3 (Extreme Drought): Much of Imperial County
 - D2 (Severe Drought): much of eastern Riverside and far north-central Imperial counties
 - D1 (Moderate Drought): small part of north-central Riverside County



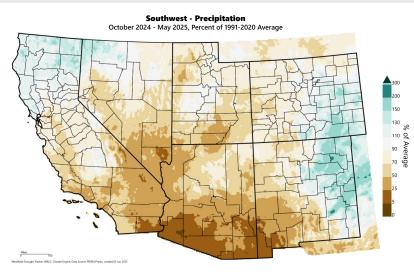


Image Caption: U.S. Drought Monitor valid 5 am PDT June 17, 2025

Precipitation

- Rainfall across most of southern Arizona, as well as SE California has been less than 25% of normal so far this Water Year (since Oct 2024)
- Rare late spring rainfall allowed some locations to exit from record dryness
- Steady drought conditions to localized improvements have been common over the past month

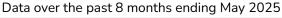
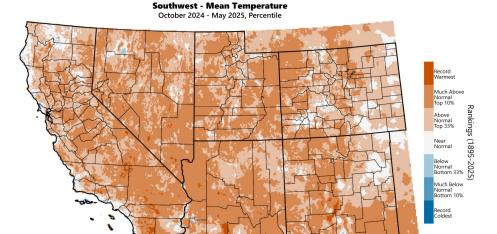


Image Captions:

Left - Water Year Precipitation Percentile Ranking


Right - Water Year Percent of Normal Precipitation Data Courtesy WestWide Drought Tracker.

- Average temperatures this Water Year (since Oct 2024) are mostly 1-3°F above normal
- This excess warmth in the historical top 10th percentile has heightened evapotranspiration losses and more rapidly depleted soil moisture affecting vegetation and streamflow

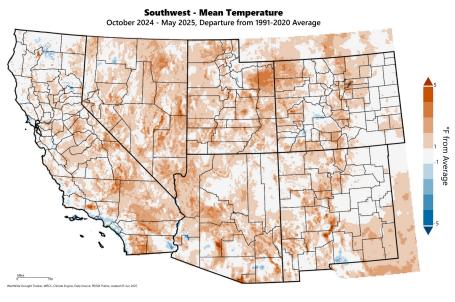


Image Captions:
Left - Water Year Temperature Percentile Ranking
Right - Water Year Departure from Normal Temperature
Data Courtesy WestWide Drought Tracker
Data over the past 8 months ending May 2025

Links: See/submit Condition Monitoring Observer Reports (CMOR) and view the Drought Impacts Reporter

Hydrologic Impacts

- Tier 1 shortage conditions remain in effect on the Colorado River impacting water deliveries in Arizona for 2025
- Unregulated inflow into Lake Powell is now forecast under 60% of average through this summer which will keep Lake Powell and Mead water levels depressed such that Tier 1 restrictions are almost certain through 2026.

Agricultural Impacts

• There are no known impacts at this time

Fire Hazard Impacts

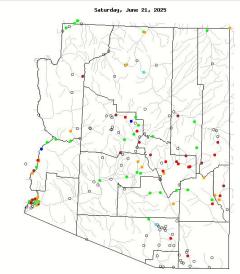
 With recent rainfall, wildfire activity has temporarily slowed entering the height of the typical spring/early summer fire season. Resources remain somewhat stressed across the Southwest, and expansive drought may heighten the threat for significant wildfires this year.

Other Impacts

• Ranchers in parts of Arizona have experienced a significant lack of forage growth due to lack of rainfall the past year. Supplemental feed and water hauling have been necessary in many locations.

Mitigation Actions

• A Drought Emergency Declaration remains in effect for the state of Arizona as signed by the governor in accordance with the <u>Arizona Drought Preparedness Plan</u>. The continuation of this Drought Emergency has been recommended by the <u>Drought Interagency Coordinating Group</u>



Phoenix

Hydrologic Conditions and Impacts

- Small and medium unregulated rivers and streams across Arizona were generally flowing at below average levels, though a wide range exists
- Small to medium sized reservoirs were below levels measured last year and near or below long term averages
- Larger reservoirs on the Colorado river continue to hover well below average forcing shortage conditions and reduced water deliveries

	Expl	lanation	ı - Perce	ntile cla	asses		
Low	<10	10-24	25-75	76-90	>90	High	N. D.
LOW	Much below normal		Much above normal	nigii	No Data		

Reservoir Average Last Year's Volume Current Volume Ster of caps in spreastdoord of reservoir size, but not to scale				70	7	2		
Reservoir	Capacity	Current Storage*	Max Storage*	One-Month Change in Storage*	4	/		ver
1. Lake Powell	31%	7,639	24,322	-98.4	Colorado			
2. Lake Mead	33%	8,593	26,159	-325.0	le o		RIVE	OF.
3. Lake Mohave	93%	1,677	1,810	-16.0	3)		18/2	
4. Lake Havasu	93%	573	619	+9.1	}	5		
5. Lyman	30%	9	30	-0.3	7		River 6	1
6. San Carlos	14%	121	875	-22.3	many	70.1		, \
7. Verde River Syste	m 53%	153	287	-0.2	_		\/	
8. Salt River System	70%	1,409	2,026	-40.4				
		*KAF: th	ousands of a	cre-feet		E	CLIM Climate A syment for the	A

each reservoir. The table also lists current and maximum storage, and change in storage since last month

Image Caption:

Left: USGS 14 day average streamflow compared to historical streamflow valid June 21, 2025. Data courtesy of USGS

Right: Arizona reservoir status. Data courtesy of CLIMAS

Link to Wildfire Potential Outlooks from the National Interagency Coordination Center.

- Dead fine fuels largely remain below 6% over much of the local area, but could be much worse without recent rainfall.
- The threat of significant large wildland fires should return closer to normal in July with moisture intrusions following the onset of monsoon flow.

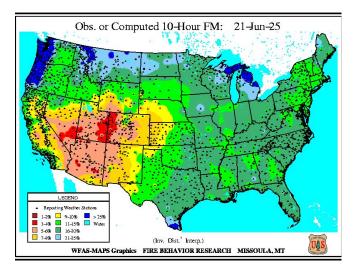
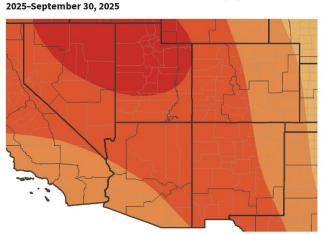
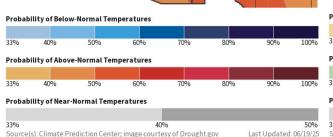
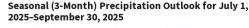


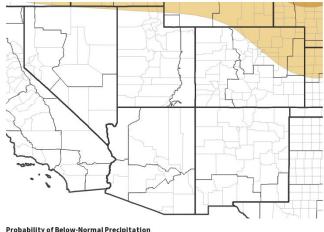
Image Caption: Left - 10-hour dead fuel moisture from Wildland Fire Assessment System
Right - Significant Wildland Fire Potential Monthly

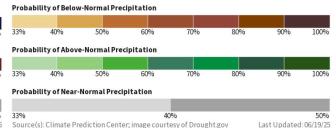
Outlook for July 2025



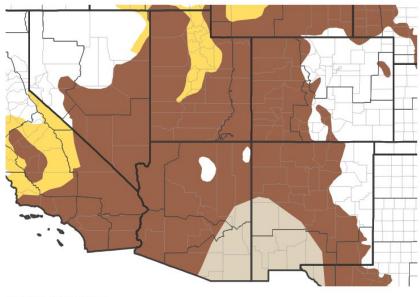

Long-Range Outlooks


The latest monthly and seasonal outlooks can be found on the CPC homepage


Seasonal (3-Month) Temperature Outlook for July 1,


- Temperatures over the next 3 months (Jul-Aug-Sep) have better chances of averaging at above normal levels
- Odds of total precipitation during the Jul-Aug-Sep time frame have reverted to equal chances of above, below, or near normal amounts

Drought Outlook


The latest monthly and seasonal outlooks can be found on the CPC homepage

- Widespread Severe to Extreme Drought currently exists over central and western Arizona, as well as southeast California
- Thunderstorms following moisture return due to monsoon flow typically becomes more widespread across the region in July and August
- There are signals that rainfall this monsoon will be sufficient for areas of drought improvement

Links to the latest:

Climate Prediction Center Monthly Drought Outlook
Climate Prediction Center Seasonal Drought Outlook

Seasonal (3-Month) Drought Outlook for June 19, 2025–September 30, 2025

Source(s): Climate Prediction Center; image courtesy of Drought.gov

Last Updated: 06/19/25

