Use of Remote Sensing to Detect and Monitor Landscape Vulnerability to Wind Erosion and Dust Emission With Potential Connections to Climate and Air Quality

Pat Chavez
Adjunct Research Professor
Northern Arizona University (Retired USGS)
March 2015
Pat.Chavez@nau.edu
This presentation will cover

• Use of satellite and airborne imaging to detect and monitor *temporal and spatial dynamics* of vegetation which is *critical to wind erosion vulnerability*

• *Monitoring dust storms* using satellite imaging, field based cameras, wind meters, and sensit

• Potential relationships between *climate, dust, and air quality*

• Potential applications *along I-10 and Southern Arizona*
In many landscapes the potential vulnerability to *wind and water erosion* is a critical issue with *vegetation sheltering and dynamics* being important components that influence the level of vulnerability.

Therefore, methods to detect, map, and monitor the *temporal* and *spatial dynamics of vegetation* are critical to help map and *monitor the degree of vulnerability* to wind and water erosion at any given time.
Temporal Dynamics

Detecting and mapping vegetation dynamics though time using 30m resolution Landsat TM satellite images. In arid regions most of the short-term (months to a few years) dynamics are related mostly to annuals and grasses --- fine fuels.
Sept 2004

Note:
CIR shows green veg in shades of pinks and reds
Feb 2005

Note:
CIR shows green veg in shades of pinks and reds
Veg Cover
Annuals and Grass
(Fine Fuels)
Bottom Images --- Amount of Sheltering with Grey/Blue High and Red/Yellow Low

Sept 2004

Feb 2005

Sheltering

Mojave River Area
Landsat TM - Sep 04

Sheltering

Mojave River Area
Landsat TM - Feb 05

Surface Sheltering Index Map from Landsat TM - Sep 04

Surface Sheltering Index Map from Landsat TM - Feb 05
Spatial Dynamics

Detecting and mapping spatial dynamics in arid lands is typically related to percent woody vegetation cover and very-high resolution airborne or satellite images are needed (in arid lands these vegetation types are mostly bushes, shrubs, and small trees -- coarse fuels)
An airborne digital imaging system was used to collect images with 2 to 4 inch resolution south of Boulder, NV.
Digital mosaic of CIR images with woody vegetation shown in shades of pinks and reds
Vegetated Pixels --- White
Not Vegetated --- Black
Percent Veg Cover
10 by 10 meter footprint
Percent Veg Cover
20 by 20 meter footprint
Current project with the BLM to investigate the use of remote sensing to monitor the National Monuments (SDNM and IFNM) in Southern Arizona

* Travel Network --- roads and trails (using 0.5m satellite and 0.1m aerial)

* Vegetation Dynamics (using 30m and 2m/0.5m satellite)
CIR with woody vegetation seen in shades of pinks and reds

Note that due to the low sun angle in this October image the shadows of the Saguaro Cacti can be seen which is not the case in an image collected in June.
Vegetated Pixels --- White
Not Vegetated --- Black
Detecting and Monitoring Dust Storms

• An important objective in a previous project was to detect and monitor active dust storms in the southwestern United States.

• Besides satellite and airborne imaging, field based instruments were used at several locations to do high temporal monitoring of the surface during high wind events (photos every 15 mins).

• Movies were generated using both GOES satellite and ground-based images of dust storms.
Examples of Satellite Imaging of Dust Storms

Keep in mind

1. The *temporal resolution* --- fly over frequency of most satellite imaging systems is not sufficient to monitor relatively short lived events --- the *only exception is the GOES* weather satellite.

2. Only *large and high concentration* dust storms can usually be detected using either the *GOES or MODIS* satellites.

3. *Can not see thru clouds* so problems seeing dust storms related to monsoon weather patterns.

4. *Over time* enough large dust storms *can be detected to help identify* some of the major dust sources in a given region.
MODIS Images

Southwestern United States --- LARGE IS RELATIVE

San Francisco

Vegas

Phx
13March06 Dust Storm
Western China

Approximate Same Size Area as SW US Image

Tarim Basin approximately three times the size of Arizona
Influence of *Climate on Landscape Vulnerability* to Wind Erosion and Dust Emission

Droughts in the Southwest
Cameras, Wind Meters, and Sensit
Mojave Desert: Balch

Wind Speed vs Particle Count

Dry Year

April 2000

May 2000
Mojave Desert: Balch

Wind Speed vs Particle Count

Not So Dry Year

April 2001

May 2001
Sensit Particle Count --- From USGS Instrument at Soda Lake
NOAA’s PDSI Data --- Note: -3.5 to -4.0 seems to be a critical threshold

PDSI = -4
PDSI = -4
Severe -3.0 to -3.9 Extreme -4.0 to 4.9 Exceptional -5.0 to less

PDSI = -4
Unprecedented 21st century drought risk in the American Southwest and Central Plains

FIG 4

Brown shading --- 1100–1300 -- timing of the medieval mega droughts

Blue lines represent all models historical scenario 1850–2005

Red lines are for all model years scenario 2050–2099
Climate and Air Quality in Arid Regions

Phoenix, Arizona
An important parameter in arid landscapes that is affected by climate conditions is the amount of vegetation cover. As mentioned earlier on a short-term basis (months to a few years) the amount of annuals and grasses (non-woody vegetation) is the most temporally dynamic. Change in the amount of cover of these vegetation types can be dramatically affected by wet-to-normal-to-dry climate cycles.

Could this be impacting air quality in Southern Arizona?

(Notice air quality conditions when PDSI is -4 or less)
2005 --- Very Wet Year

2007 --- Very Dry Year
2010 --- Normal to Wet Year

2013 --- Very Dry Year
Potential Applications
Along I-10 and Southern Arizona
Dust — Safety Related:
The stats published by SDM related to crashes by weather types (clear, snowy, dusty conditions) indicate that those related to dusty conditions are a relatively small percentage of the total number of fatal crashes state wide.

Number of Crashes by Weather, by Injury Severity 2006 - 2010

<table>
<thead>
<tr>
<th>Weather Conditions</th>
<th>No Injury</th>
<th>Possible Injury</th>
<th>Non Incapacitating Injury</th>
<th>Incapacitating Injury</th>
<th>Fatal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>365,969</td>
<td>88,374</td>
<td>62,485</td>
<td>18,546</td>
<td>3,459</td>
<td>536,833</td>
</tr>
<tr>
<td>Cloudy</td>
<td>33,125</td>
<td>7,883</td>
<td>5,900</td>
<td>1,831</td>
<td>398</td>
<td>49,137</td>
</tr>
<tr>
<td>Sleet Hail Freezing Rain Or Drizzle</td>
<td>448</td>
<td>59</td>
<td>93</td>
<td>29</td>
<td>8</td>
<td>637</td>
</tr>
<tr>
<td>Rain</td>
<td>14,592</td>
<td>3,117</td>
<td>2,101</td>
<td>542</td>
<td>106</td>
<td>20,458</td>
</tr>
<tr>
<td>Snow</td>
<td>3,370</td>
<td>367</td>
<td>428</td>
<td>76</td>
<td>20</td>
<td>4,261</td>
</tr>
<tr>
<td>Severe Crosswinds</td>
<td>426</td>
<td>78</td>
<td>113</td>
<td>44</td>
<td>13</td>
<td>674</td>
</tr>
<tr>
<td>Blowing Sand & Soil Dust</td>
<td>408</td>
<td>94</td>
<td>89</td>
<td>37</td>
<td>16</td>
<td>644</td>
</tr>
<tr>
<td>Fog Smog Smoke</td>
<td>160</td>
<td>37</td>
<td>26</td>
<td>9</td>
<td>1</td>
<td>233</td>
</tr>
<tr>
<td>Blowing Snow</td>
<td>90</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>108</td>
</tr>
<tr>
<td>Other</td>
<td>88</td>
<td>22</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td>132</td>
</tr>
<tr>
<td>Unknown</td>
<td>2,510</td>
<td>425</td>
<td>295</td>
<td>102</td>
<td>302</td>
<td>3,634</td>
</tr>
<tr>
<td>Total</td>
<td>421,166</td>
<td>100,464</td>
<td>71,553</td>
<td>21,223</td>
<td>4,325</td>
<td>618,751</td>
</tr>
</tbody>
</table>

Injury Breakdown 2006 - 2010

<table>
<thead>
<tr>
<th>Weather Conditions</th>
<th>No Injury</th>
<th>Possible Injury</th>
<th>Non Incapacitating Injury</th>
<th>Incapacitating Injury</th>
<th>Fatal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>86.9%</td>
<td>88.0%</td>
<td>87.3%</td>
<td>87.4%</td>
<td>80.0%</td>
<td></td>
</tr>
<tr>
<td>Cloudy</td>
<td>7.9%</td>
<td>7.8%</td>
<td>8.2%</td>
<td>8.6%</td>
<td>9.2%</td>
<td></td>
</tr>
<tr>
<td>Sleet Hail Freezing Rain Or Drizzle</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
<td></td>
</tr>
<tr>
<td>Rain</td>
<td>3.5%</td>
<td>3.1%</td>
<td>2.9%</td>
<td>2.6%</td>
<td>2.5%</td>
<td></td>
</tr>
<tr>
<td>Snow</td>
<td>0.8%</td>
<td>0.4%</td>
<td>0.6%</td>
<td>0.4%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Severe Crosswinds</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.2%</td>
<td>0.3%</td>
<td></td>
</tr>
<tr>
<td>Blowing Sand & Soil Dust</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.1%</td>
<td>0.2%</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Fog Smog Smoke</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.04%</td>
<td>0.02%</td>
<td></td>
</tr>
<tr>
<td>Blowing Snow</td>
<td>0.02%</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.00%</td>
<td>0.02%</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.02%</td>
<td>0.03%</td>
<td>0.02%</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td>0.6%</td>
<td>0.4%</td>
<td>0.4%</td>
<td>0.5%</td>
<td>7.0%</td>
<td></td>
</tr>
</tbody>
</table>
However, the stats show that if you are involved in a crash caused by *blowing sand-soil-dirt* your *chances of getting killed* are approximately **3.9 times greater** than a crash that occurs during *clear* conditions and **5.3 times** as likely than a crash caused by *snowy* conditions.

<table>
<thead>
<tr>
<th></th>
<th>Fatal</th>
<th>Total</th>
<th>Percent Fatal</th>
<th>Ratio With Dusty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clear</td>
<td>3459</td>
<td>538,833</td>
<td>0.00642</td>
<td>3.87</td>
</tr>
<tr>
<td>Snow</td>
<td>20</td>
<td>4,261</td>
<td>0.00469</td>
<td>5.30</td>
</tr>
<tr>
<td>Dusty</td>
<td>16</td>
<td>644</td>
<td>0.02484</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fatal and Total stats from the SDM table
Safety Related

Potential applications of satellite remote sensing that could help with *safety related issues* includes:

- Analyze and map *vegetation cover characteristics*, including *percent vegetation cover, temporal dynamics of annuals and grasses, and temporal dynamics of agricultural fields* in and around the region where dust storms are a major hazard along I-10 and other highways --- *perhaps focus on the west side of I-10* at first.
March 31, 2013
Landsat TM

CIR image so vegetation that is green shows up in shades of pinks and reds.

Casa Grande

Picacho Peak
Oct 17, 2013
Landsat TM
(Days Before Major Accident)
• Monitor the agricultural fields monthly (or more often if needed) to determine the amount and location of fields that are vegetated versus not vegetated at any given time and study the trend throughout the year and different seasons to see how this might be related to wind erosion and dust emission vulnerability. Investigate the potential of using this information to help predict dust emission potential in a given area at any given time.

--- FOR EXAMPLE ---
What About the Potential Impact by Non-Agricultural Land Use?

- Investigate the *potential impact* to landscape vulnerability to dust emission by *Non-Agricultural land use* patterns

--- FOR EXAMPLE ---
General area of major dust source --- SW of Salton Sea
Picacho Area --- Google Earth ------- I-10
Google Earth
Air Quality Related Issues

(Not sure there will be enough time for the next few slides)

From some initial data mining it appears like there is a **good distribution of ground-based air quality monitoring stations** within the counties in the region and some **excellent reports have been generated** using data collected by those stations.

One of the issues that impacts analyzing and monitoring air quality is related to the fact that **ground-based stations have excellent temporal resolution** but even with the current good distribution they have **relatively poor spatial resolution**.
Potential applications of satellite remote sensing that may help with air quality related issues includes:

• Investigate the potential to generate haze maps using Landsat 8 satellite images. Resulting haze maps could be correlated to PM10 and PM2.5 data collected by ground-based instruments to calibrate and convert the haze maps to PM10 (or 2.5) maps of the region. There have been some initial discussions of this with the BLM and potential use to analyze the impact to visibility within national monuments in southern Arizona.
The results could have several applications including generating much higher spatial resolution PM10 and/or PM2.5 maps that could be used to help identify air quality hot spots and transport patterns within the image area (a single Landsat image with 30m resolution has a footprint of 110 miles by 110 miles).

Multi-temporal maps such as these could be used to help identify where ground-based monitoring stations should be placed in order to collect data that are representative of the areas that need to be monitored.
Combining the excellent *temporal resolution* of the ground-based stations with the excellent *spatial resolution* of satellite images could provide an enhancement for air quality mapping and monitoring.
THANK YOU FOR YOUR TIME AND THE OPPORTUNITY TO PRESENT AT THIS IMPORTANT WORKSHOP

Pat.Chavez@nau.edu