Soil Conditions and Dust Production

Dr. Jim Walworth Dept. of Soil, Water & Environmental Science University of Arizona (520) 626 - 3364 walworth@ag.arizona.edu

Factors that control the process of soil aerosol production

- Soil structure is the arrangement of soil sand, silt, clay particles into stable secondary units or aggregates
- Aggregates are composed sand, silt, and clay particles, cemented together by clays or organic matter
- Structure influences water infiltration, drainage, water holding capacity, aeration, salinity, erodibility

Dispersed Particles

Aggregated or Flocculated Particles Water, roots move in macropores between aggregates

Dispersed soil plugs macropores

If soil is dispersed

- 1. Water can't soak into soil
- 2. Water accumulates, along with dissolved salts
- 3. Water evaporates, leaving salts behind
- 4. Soil becomes saltier
- 5. Plants die, leaving bare erodible soil

Lordsburg Playa, NM

Bare soil is susceptible to wind erosion vegetation cover protects the soil surface

In dispersed soils:

accumulated salts reduce or eliminate vegetation particles are not bound in aggregates soil is susceptible to wind erosion

Flocculation versus Dispersion

• Flocculation is controlled by salt concentration and cation properties (charge and hydrated radius)

lon		Relative Flocculating Power
Sodium	Na ⁺	1.0
Potassium	K+	1.7
Magnesium	Mg ²⁺	27.0
Calcium	Ca ²⁺	43.0

Sumner and Naidu, 1998

• Soil cations vary in their ability to flocculate particles

Soil Aggregate Stability

EC (electrical conductivity) is a measure of total salinity: EC x 640 = ppm

Rainwater standing on a non-absorbent soil along I-10 North of Picacho. This is typical of sodiumaffected soils.

TIME = 10 min

Water

Water & Gypsum (CaSO₄·2H₂O)

Water Water & Gypsum

Former farmland North of Picacho, AZ

- This soil has poor structure because of sodium accumulation
- Over 50 years, this land has not re-vegetated
- The low areas (where water accumulates) have the highest sodium levels; water does not soak in, and soils are nearly bare

Summary Keys to wind erosion

- Soil cover
 - Moisture
 - Tillage
 - Soil salinity
 - Soil sodicity

- Soil structure
 - Organic matter
 - Soil salinity
 - Soil sodicity
 - Moisture

- Wind speed
 - Surface roughness
 - Vegetation