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SOIL| | HEALTH

The continued capacity of a soil to function
as a vital, living ecosystem that sustains
plants, animals, and humans.

USDA NRCS (2012)




Lehmann et al. 2020 Nature Reviews
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Fig. 1| Soil fertility, quality, health and security. The concepts vary by what relevant spatial scales,
functions, ecosystem services and stakeholders they capture (listed as nested concepts on the
right of the figure). The concepts also differ in the view of soil rights and assessments. Soil health
encompasses a broad range of ecosystem functions, services and actors, impacting a wide array of
sustainability goals. The five functions listed here impact overall soil-ecosystem services™*".
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Fig. 2. Conceptual illustration showing the increasing number and range of
ecosystem functions considered in the historical succession from soil fertility to
soil quality to soil health. The boundaries between the various concepts are not
always distinct, accounting for variable interpretations of these terms in the
literature; for example, some authors see soil quality and soil health as syn-
onymous. We suggest, however, that a strength of the soil health metaphor is
that it enfolds an expanded, more qualitative list of socio-ecological functions,
not directly considered in earlier terms. Contemplation of soil health, therefore,
requires a deliberate, adventurous transdisciplinary approach.
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conservation and economic beneﬁ’“healthy soils

A Roadmap to U.S. Soil Health
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Physical Approaches to Rebuilding Aggregates

d Mechanical treatment (e.g., berms)

Underlying soil structural instability is not fixed;
doesn’t operate at appropriate spatial scale



Physical Approaches to Rebuilding Aggregates

d Conservation tillage in croplands

Conservation Tillage: Traditional Tillage:
Non-Compacted Soil Compacted Soil

But not always...




Chemical Approaches to Rebuilding Aggregates

Mineral Surface

H Gypsum “Cation Bridging”
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It works but is not a long-term solution,
and many desert soils already have high Ca




Chemical Approaches to Rebuilding Aggregates
d Synthetic polymers (e.g., Soil Sement, Gorilla Snot)

Expensive; Can be toxic; Not guaranteed
beyond 3 years; Do not promote plant growth




But what about microbial ”glues?”
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3 Native Plant Species:

Phase 2: Field Plots
Phase 1: Laboratory e erass ———

—— Fourwing saltbush
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1x1 m plots with 5 replicates of 4 treatments:
Control, Microbial Inoculant, Plant Seeds, Combo

Soil health indicators:

* Water-stable macroaggregates
* Microbial/plant EPS “glues”

e Other organic metabolites

* Metagenome

* Nutrients

3 Microbial Inoculants:
Cyanobacteria

Arizona Imstitutes  Mycorrhizal fungi * Plant/root biomass
*| for Resilience EPS-producing bacteria « Dust production
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Effect of microbial inoculants on water-stable soil macroaggregates
across all plant treatments (none = no inoculant)
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Conclusion: The cyanobacterial inoculant
was the best soil aggregator
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No statistically significant effect of
cyanobacterial inoculant on soil
macroaggregates under field
conditions (p = 0.37), but headed
in right direction (+9%).




Ground truthing soil dust emission using
portable wind tunnel
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* Measures dust production at various “wind” speeds
* Determines mass of dust produced and threshold friction velocity

** But can’t sample over plants
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Portable Wind Tunnel Results
U10 Low (m/s) U10 High (m/s)
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Although native grasses did not perform well under field conditions, we found using the portable
wind tunnel that plots with cyanobacteria had a threshold friction velocity (TFV) two times
greater than the plots without the inoculant, indicating a much lower potential for dust emission
from soils with added cyanobacteria. The existing degraded soils at the site began producing

substantial dust at wind speeds between 12 and 16 mph. However, the soils we inoculated with
cyanobacteria more than 2 months earlier did not begin producing substantial dust until wind
speeds between 24 and 29 mph. As far as we know, this is the first study to show the full
mechanism and potential for a soil microbial inoculant to decrease dust emission.




In conclusion... .
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