

## Introduction

- Mining emissions pose an especially high threat to environmental and public health due to the high potential of contaminant concentration and emission of particulates (Csavina et al., 2012)
- This is of particular concern for arid and semi-arid regions that cover approximately one-third of the global land area (Seinfeld and Pandis, 2016)
- Extensive research in recent years in Arizona and northern Mexico have shown that heavy metals and metal(loid)s are efficiently emitted from smelting processes and mine tailings (Camacho et al., 2011; Csavina et al., 2014)

Sites with major mining products in Arizona

# Background



(Now demolished) smelter from Resolution Copper (formerly Magma Copper)



from Arizona Geological Survey, 2015

 $\overrightarrow{x}$ 

ഹ

Lime

### Motivation



- Assesses residential environmental quality of communities neighboring resource extraction activities through a co-created citizen science design (Ramírez-Andreotta et al., 2015; Sandhaus et al., 2019; Manjón et al., 2020)
- Based on local observations and historical knowledge, community champions reached out to the UA's National Institute of Environmental Health Sciences' Superfund Research Program in 2018 with environmental quality concerns → Research Translation Core PI Ramírez-Andreotta began partnership building

In Loving Memory of

**Roy C. Chavez** 

Chair/Spokesperson, Concerned Citizens and Retired Miners Coalition (Chair is now Henry C. Muñoz Sr.)



## Goal of the Study

- Assess whether dust passively collected on plant leaves (foliar dust) can serve as a low-cost air monitor and indicator of metal(loid)-laden aerosols
- If proven successful, this simple, straightforward technique is broadly applicable to many sites where air monitoring is desired and sampling resources are limited





#### Results

| <b>Distance</b><br>(km from smelter) |       |       |       | Frisbee<br>(μg cm <sup>-2</sup> ) |       |       |       |     |     |       |       | Foliar<br>(µg cm <sup>-2</sup> ) |       |       |       |
|--------------------------------------|-------|-------|-------|-----------------------------------|-------|-------|-------|-----|-----|-------|-------|----------------------------------|-------|-------|-------|
|                                      | Pb    | As    | Al    | Fe                                | Cu    | Ni    | Zn    | Р   | b   | As    | Al    | Fe                               | Cu    | Ni    | Zn    |
| 0.4 - 0.79                           | 0.010 | 0.004 | 1.270 | 1.436                             | 0.075 | 0.002 | 0.057 | 0.0 | 007 | 0.010 | 0.603 | 0.954                            | 0.045 | 0.002 | 0.078 |
| 0.8 - 0.99                           | 0.007 | 0.002 | 1.034 | 1.081                             | 0.045 | 0.002 | 0.050 | 0.0 | 001 | 0.002 | 0.064 | 0.084                            | 0.004 | 0.000 | 0.015 |
| 1 - 1.49                             | 0.007 | 0.002 | 1.188 | 1.134                             | 0.044 | 0.002 | 0.072 | 0.0 | 002 | 0.002 | 0.144 | 0.147                            | 0.005 | 0.000 | 0.028 |
| 1.5 - 2.0                            | 0.005 | 0.001 | 1.134 | 1.251                             | 0.026 | 0.002 | 0.081 | 0.0 | 002 | 0.002 | 0.208 | 0.177                            | 0.007 | 0.001 | 0.016 |
| 51.8                                 | 0.009 | 0.004 | 1.438 | 1.427                             | 0.060 | 0.003 | 0.057 | 0.0 | 800 | 0.003 | 0.269 | 0.201                            | 0.015 | 0.001 | 0.025 |

- Frisbee sampled higher concentrations per element per distance, on average
- 51.8 km generally had highest element concentration

#### Concentration mostly decreased with increased distance from smelter



| Two-Sample t-Test | Pb   | As    | Al   | Fe   | Cu   | Ni   | Zn    |
|-------------------|------|-------|------|------|------|------|-------|
| Standard Error    | 0.00 | 0.00  | 0.12 | 0.18 | 0.01 | 0.00 | 0.01  |
| Degree of         | 7    | 5     | 8    | 6    | 8    | 6    | 6     |
| Freedom           |      |       |      |      |      |      |       |
| T Statistic       | 2.19 | -0.64 | 8.30 | 5.37 | 3.07 | 3.53 | 2.39  |
| P-value           | 0.97 | 0.27  | 1    | 0.99 | 0.99 | 0.99 | 0.97  |
| ICC Coefficients  | 0.39 | 0.36  | 0.03 | 0.08 | 0.30 | 0.01 | -0.11 |

- Null hypothesis failed to be rejected for any metal(loid) from the two-sample *t*-test
  - Null: average concentration of each metal(loid) was the same for both sampling methods (p < 0.05)
- Intraclass correlation coefficient (ICC) results indicated poor agreement between the contaminant concentrations from the frisbee and foliar methods



#### **Bland-Altman Plot**

Used to compare two measurement techniques, given one is a "standard"

Frisbee is considered standard based on published study

Limits of Agreement (LoA): 95% of the data should lie between these limits (if normally distributed)

- These plots implied a bias (higher concentration) toward one collection method: frisbee
- LoA indicated moderate agreement between sampling techniques overall

| Enrichment Factor<br>• Indicator of anthropogenic origin |         |        |         |        |         | 0 Mo<br>coi                       | contamination |        |         | $EF = \left[\frac{C_{n,sample}}{C_{ref,sample}}\right] / \left[\frac{C_{n,baseline}}{C_{ref,baseline}}\right]$ |         |        |           |           |  |  |
|----------------------------------------------------------|---------|--------|---------|--------|---------|-----------------------------------|---------------|--------|---------|----------------------------------------------------------------------------------------------------------------|---------|--------|-----------|-----------|--|--|
| <ul> <li>Reference species: Fe</li> </ul>                |         |        |         |        | 100+    | 100+ Significant<br>contamination |               |        |         |                                                                                                                |         |        | (Goldschm | idt, 1937 |  |  |
| Number of points Pb                                      |         |        |         |        | Α       | As Al                             |               | Cu     |         | Ni                                                                                                             |         | Zn     |           |           |  |  |
| Distance (km)                                            | Frisbee | Foliar | Frisbee | Foliar | Frisbee | Foliar                            | Frisbee       | Foliar | Frisbee | Foliar                                                                                                         | Frisbee | Foliar | Frisbee   | Foliar    |  |  |
| 0.4 - 0.79                                               | 4       | 6      | 25.0    | 23.4   | 30.8    | 101.2                             | 0.5           | 0.4    | 30.5    | 23.1                                                                                                           | 0.8     | 1.1    | 65.2      | 101.5     |  |  |
| 0.8 - 0.99                                               | 3       | 4      | 20.6    | 40.5   | 20.7    | 200.5                             | 0.6           | 0.4    | 21.5    | 23.8                                                                                                           | 0.9     | 2.0    | 60.2      | 213.9     |  |  |
| 1 - 1.49                                                 | 4       | 6      | 28.3    | 31.9   | 28.6    | 122.9                             | 0.6           | 0.5    | 29.8    | 19.2                                                                                                           | 1.6     | 1.3    | 224.0     | 223.4     |  |  |
| 1.5 - 2.0                                                | 5       | 4      | 13.8    | 44.9   | 10.1    | 80.8                              | 0.5           | 0.7    | 10.7    | 25.6                                                                                                           | 0.9     | 2.3    | 80.5      | 161.4     |  |  |
| 51.8                                                     | 1       | 2      | 21.2    | 110.7  | 25.9    | 165.5                             | 0.6           | 0.8    | 21.3    | 37.6                                                                                                           | 0.9     | 1.9    | 51.2      | 165.2     |  |  |

- Pb, As, Cu, and Zn all indicate non-crustal origin (i.e. anthropogenic influence)
- Significant contamination: foliar Pb (51.8 km), As, Zn; frisbee Zn (1-1.49 km)

- Most slopes close to 1 indicating agreement between methods
- Outlier was kept in dataset because it represented samples closest to former smelter



## Impact

- There is some statistical evidence to support the claim that foliar collects similar metal(loid) concentrations as an inverted disc (frisbee)
- Metal(loid) EF values indicated non-crustal origins, such as anthropogenic sources of metal(loid)s
  - Exception of Al and Ni
- Since there is evidence of enrichment, correlation between methods, and citizen/community science potential, this study should be repeated with different types of plants
- Increase frequency of sampling collection and take environmental conditions into collection consideration

## Acknowledgements



- Dr. Mónica Ramírez-Andreotta
- Dr. Armin Sorooshian
- Nicole Van Overmeiren
- Kyle P. Rine
- Shana Sanhaus
- Dr. A. Eduardo Saez
- Henry C. Muñoz Sr., Concerned Citizens and Retired Miners Coalition
- Superior, AZ Gardenroots participants



National Institute of Environmental Health Sciences Your Environment, Your Health.



Superfund Research Center

Integrated Environmental Science & Health Risk Laboratory



**Gardenrools** A Citizen Science Garden Project