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Abstract 

The United States’ Next Generation Weather Radar (NEXRAD) program has deployed a polarimetric upgrade to 
the WSR-88D network radars.  This modification provides new base variables to the operational community and has 
opened exciting new possibilities for improved forecasts and warnings.  One variable in particular, differential 
reflectivity (ZDR), is critically important to improved precipitation estimates and hydrometeor classification.  
However, the quality of the differential reflectivity estimate is highly dependent on the removal of biases induced by 
the radar system hardware.  These biases must be measured to an uncertainty of 0.1 dB in order to obtain maximum 
benefit from the polarimetric data and meteorological algorithms. 

 
This paper will review the engineering challenges being faced in our efforts to further improve the calibration of 

the WSR-88D to the required level of accuracy focusing on the use of microwave hardware measurements and solar 
scans.  We also offer some rules, or guides, to foster successful calibration system design and implementation. 

1  Introduction 

A joint US government and contractor team completed deployment of the polarimetric upgrade to the United 
States’ Next Generation Doppler weather radar network (NEXRAD) in the Spring of 2013.  The dual polarization 
version of the US network had been under consideration since the 1980’s, and at that time researchers were aware of 
the potential measurement accuracy requirements (Sirmans, 1984).  Since deployment activities began, scientists 
and engineers at the ROC have been monitoring network performance, estimating differential reflectivity bias and 
assisting site personnel as problems have been discovered.  This paper describes efforts at the ROC to develop 
methods for estimating the bias errors and will address potential improvements to the calibration process. 
 

The concept of measuring radar returns from precipitation at orthogonal polarizations dates back to the 1970’s.  
At that time, researchers were already considering the effects of errors on the usefulness of polarimetric data.  Seliga 
and Bringi (1976) described the sensitivity of rain rate distribution parameters to the radar measurement error.  They 
provided uncertainty estimates related to ZDR measurement errors of 0.2 dB and 0.5 dB, noting that they felt these 
error bounds were reasonable since ZDR is a differential measurement.  With this study, Seliga and Bringi 
established the initial range of requirements for ZDR uncertainty.  As was determined, the desired accuracy evolved 
into a need for uncertainties of 0.1 dB or less.  Meeting this need has been quite a challenge for the design and 
implementation of operational systems. 

 
Accurate calibration of the new hardware is essential for the NEXRAD community to gain maximum benefit 

from use of the new polarimetric variables.  The most critical parameter is differential reflectivity (ZDR), which is 
derived from the ratio of return powers in the horizontal and vertical channels.  In order to retrieve the intrinsic, or 
true, measure of ZDR, the contribution of the radar hardware itself to this power ratio must be removed.  This 
contribution, or bias, originates from several components of the radar.  There can be an imbalance in the transmitted 
powers, i.e. the horizontal and vertical components of the divided transmitter power may not be equal.  The gains of 
the antenna in the horizontal and vertical paths may not be exactly the same, and finally, the two receiver channels 
will likely not exhibit the same overall gain and will generate different levels of electronic noise.  The receiver 
channel gain imbalance is a particularly challenging aspect since the performance of the two channels can vary 
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considerably over time, as a function of temperature for example.  Measuring the receiver bias once with a high  
degree of precision is insufficient.  The receivers must be tested on a frequent basis in order to maintain system 
calibration. 

 
Accurately determining the biases related to the horizontal and vertical channels in all these subsystems 

constitutes the process of differential reflectivity calibration.  This paper reviews the ZDR calibration methods 
provided in the initial design and development of the upgrade and provides descriptions and status of development 
for the current projects underway at the WSR-88D Radar Operations Center (ROC), the National Center for 
Atmospheric Research (NCAR) and the National Severe Storms Laboratory (NSSL).  These partners are actively 
pursuing new methods of monitoring the state of ZDR calibration in the network, and are developing modifications to 
the calibration process in order to provide the necessary accuracy.  ROC and NSSL teams have developed methods 
for estimating errors using external targets such as rain, dry snow and Bragg scatter (Zittel, 2014; Hoban, 2014; 
Cunningham, 2013).  The ROC and NCAR are implementing an external method based on the use of cross 
polarization power returned from ground clutter (Ice, 2013; Meymaris, 2013; Hubbert, 2003, 2012). 

 
This paper further reviews the benefits of associated with maintaining a good calibration state in the WSR-88D.  

These challenges can be met with a combination of engineering calibration improvements and external target 
monitoring. 

 

2  Motivation – Why Calibrate? 

As mentioned above, researchers recognized early that accurate measurements of the differential power would be 
critical to the success of polarimetric weather radar.  Of course, requirements for accurate measurements are not 
exclusive to polarimetric radars.  For non-polarimetric radars, precipitation estimation algorithms were primarily 
based on reflectivity.  The traditional requirement for the uncertainty in the reflectivity estimate (dBz; Smith, 2010) 
is 1.0 dBz (Ice, 2005; Sirmans, 1992).  This is the level of accuracy needed to obtain acceptable rainfall rate 
accuracy.  While the original WSR-88D hardware and software was believed to be capable of calibration to this 
requirement, it proved difficult to achieve in practice in the early days of NEXRAD (Ice, 2005).  In fact, upon the 
initial deployment of the network in the early 1990’s, the government did not have a practical method for calibrating 
the hardware. 

 
The Engineering Branch of the ROC developed a comprehensive method for reflectivity calibration, but problems 

remained until a network monitoring capability was established.  This capability was based on a software tool that 
compared the reflectivities from adjacent radars with the objective of identifying specific radars that required 
attention when their estimates on common volumes of precipitation were in disagreement with their neighbors 
(Gourley, 2003).  Reflectivity calibration accuracy and stability was not consistently achieved until this monitoring 
capability was in place and several issues with antenna gain measurement were resolved (Ice, 2005). 

 
With the polarimetric capability, a new Quantitative Precipitation Estimation (QPE) algorithm is being deployed 

(Berkowitz, 2013).  This algorithm relies on the new polarimetric variables in order to provide precipitation 
estimates with less error than the legacy algorithm which used reflectivity alone.  The QPE method consists of three 
parts: (1) Hydrometeor Classification Algorithm (HCA), (2) Melting Layer Detection Algorithm (MLDA), and (3) 
the QPE algorithm itself.  The outputs of the HCA and MLDA are critical inputs to the QPE.  All three use 
reflectivity, differential reflectivity, cross correlation coefficient, and specific differential phase as inputs. 

 
In order for the QPE, or for any rain rate estimator using differential reflectivity, to perform substantially better 

than the legacy estimator, the differential reflectivity must be estimated to within an error limit of 0.1 to 0.2 dB 
(Zrnić, 2010; Ryzhkov; 2005, Brunkow; 2000; Bringi, 1983).  It is interesting to note that a range of 0.1 to 0.3 dB 
was considered achievable with sufficient numbers of samples processed (Bringi, 1983).  For light to moderate rain, 
the 0.1 dB accuracy must be achieved to maintain rain rate error estimates at around 10%.  For heavier rain, the 
accuracy can be relaxed to 0.2 dB.  If the error in calibration is greater than about 0.3 dB, then the polarimetric 
precipitation estimators do not perform substantially better than non-polarimetric algorithms. 
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The primary source of error in the ZDR estimate is the uncertainty in the measurement of the system bias, or the 
contribution to the overall power ratio coming from the radar hardware.  The accurate measurement of this value, 
the system bias, has been the focus of much attention over the past ten years (Zrnić, 2006). 

 
Various methods for determining the system bias have been studied and used in the research community.  The 

common practice is to obtain careful measurements of the differences between the two polarization channels (H and 
V) for the transmitter, receiver, and antenna.  However, even with careful measurements using well calibrated 
instruments, the overall uncertainty of the bias has historically been greater than the required tolerance.  Most 
research radars have been calibrated using a method that rotates the radar antenna through 360 degrees while 
pointing it in a vertical position in the presence of light rain (Gorgucci, 1999).  This calibration method takes 
advantage of the azimuthal symmetry resulting from the rain drops appearing spherical from below (Bringi and 
Chandra, 2001).  This symmetry of the scatterers results in an expected mean value of zero for ZDR in the resolution 
volume.  A non-zero mean value of the ZDR estimate obtained in this manner would be equivalent to the radar 
system bias. 

 
To date the vertical pointing method has been considered the best external means of obtaining the system bias.  

During the development of the prototype upgrade for NEXRAD, the KOUN radar was calibrated using careful 
engineering measurements (Zrnić, 2006).  The program did not develop an external method although the use of 
precipitation at angles other than vertical were explored (Ryzhkov, 2005).  The production WSR-88D polarimetric 
upgrade was delivered with a sophisticated calibration capability based on hardware measurements combined with 
solar scans (Balaji, 2012).  The next section presents the baseline WSR-88D engineering calibration method. 
 

3  The WSR-88D Baseline Method 

 
The WSR-88D in its baseline configuration does not have the capability to point vertically, so the classic method 

was not available for the production NEXRAD polarimetric upgrade without modifications to the antenna pedestal 
hardware.  Also, it was undesirable to take the radars offline during precipitation events in order to perform 
calibration vertical pointing scans.  Much of the focus of the design and development of the production hardware 
focused on calibration and the contractor, Baron Services Inc., provided the necessary hardware components and 
procedures for conducting what came to be known as an “engineering method”.  This method is currently employed 
to obtain the bias components for the transmitted signal, the receiver channels, and the antenna. 

 
Figure 1 is a simplified block diagram of the WSR-88D showing the three major subsytems relevant to ZDR 

calibration (transmitter, receiver, antenna).  The bias elements that contribute to the calibration problem are the 
receiver channel bias (RCB), the transmitter bias (TXB), and the antenna bias, designated as sun measurement bias 
(SMB).  The antenna bias is designated as sun measurement bias because solar scans are used for this measurement.  
Note that the three subsystems come together at a common point known as the calibration reference plane.  This is 
established as the dividing point for separating out the three distinct components of the overall system bias.  At this 
point, waveguide couplers are provided that allow insertion of test signals (for receiver bias measurements) and for 
extracting samples of the signals within the waveguide (for transmitter power measurements). 

 
The baseline hardware suite contains all of the necessary components for generating the receiver test signals and 

for extracting and processing the transmitter power samples from both channels.  However, the hardware 
components that establish and maintain the bias measurements can introduce errors, and these must be measured.  
Calibration is then the process of characterizing the built-in-test equipment by measuring the bias introduced by the 
receiver test signals (test signal bias) and the transmitter power measurement hardware (power sense bias) and 
obtaining the antenna bias from solar scans.  These three measurements are recorded and used to establish an initial 
state of calibration.  Once the initial state of calibration is established, these parameters are used to maintain the 
calibration state through periodic measurements. 
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Figure 1:  Calibration Subsystems Basic Diagram 
 
 
Calibration consists of determining the values of the three elemental biases described above, and combining them.  

For the WSR-88D the following equation applies: 
 

                                                         Z
DR

 offset = 2* SMB + RCB + TXB                                                  (1) 

 
SMB is included with a factor of 2 because it is the one-way measurement of antenna bias, and the antenna is a 
common component of the signal transmission and reception processes. 

  
3.1  The Calibration Reference Plane Couplers 
 

As mentioned, the calibration process relies heavily on the use of microwave couplers for injecting receiver test 
signals and for measuring the transmitter power balance.  The designed insertion loss of the couplers is 30 dB, 
meaning that the signals measured at the output port are 30 dB lower in power than the level existing within the 
waveguide.  The actual value of the loss for any particular coupler at the radar unit’s operating frequency must be 
known to a high degree of accuracy.  Moreover, the value depends on the direction of coupling.  The so called 
forward coupling factor, which is associated with power measurements, is different from the reverse coupling factor 
that is part of test signal injection. 
 

The coupling factors are measured by the hardware manufacturer, using a vector network analyzer calibrated with 
the Through-Reflect-Line (TRL) method.  The four parameters supplied for the power sense (forward) and signal 
injection (reverse) coupling factors are: R293, H channel reverse coupling; R294, V channel reverse coupling; R295, 
H channel forward coupling; and R296, V channel forward coupling.  The “R” designators are the terms used in the 
WSR-88D software. 
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Figure 3:  Example of Method for Obtaining Test Signal Bias (R297) 
 
This is a theoretically simple and elegant method for obtaining the test bias numbers.  However, in practice, 

results of this process can be inconsistent.  For this reason, the system procedures require that several measurements 
be made and a consistency check is done before final results are accepted. 

 
The polarimetric hardware is mounted on the elevation arms of the antenna pedestal assembly.  The advantage of 

this configuration is that the low noise amplifiers are located very near the antenna port, thus improving sensitivity. 
Also, since the power divider function is on the antenna, the H and V waveguide paths to the feed assembly are 
shortened, thus reducing effects of differing path lengths on overall system initial phase and perhaps allowing the 
system phase to be more stable over time.  The disadvantage to this configuration is that maintenance can be 
difficult. 

 
In order to perform the crossed and straight calibration process, the technicians must stand on a ladder and reach 

behind some of the waveguide components.  Figure 4 shows a view of the RF microwave components, or the RF 
Pallet from the floor of the dome area with the ladder in place.  The small inset photos of Figure 4 show the 
connectors and Heliax cables that are crossed for the tests.  The connectors are of a snap-on variety that were 
selected to allow consistent results from multiple connections. 
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Figure 16:  Cross Polar Power Relevant Terminology 

 
Figure 17 is the algebraic demonstration of how the sun ratio and the cross polar power ratios combine to form the 

system bias.  The “key to success” for this proof is that the sun ratio is defined as vertical noise to horizontal noise 
power,  the inverse of convention.  This key element results in the cancellation of almost all of the terms in the 
Zdrtrue equation.  The sun noise power ratios are assumed to be unity (the sun does not exhibit a polarization 
preference at microwave frequencies), and the cross polarization clutter power ratio is assumed to equal one via 
reciprocity. 

 
The validity of the cross polarization power method has been extensively verified on the S-Pol radar (Hubbert, 

2007a, 2011).  NCAR first developed and verified the method using precipitation while operating the S-Pol radar in 
the so called “fast alternating” mode  which uses a high speed rotary waveguide switch to alternately transmit the H 
and V pulses.  This allowed the cross polar power pairs (CPXV/CPXH) to be obtained close together in time sequence.  
The NCAR team conducted vertical pointing calibrations in conjunction with the cross polarization power 
measurements and verified that the accuracies of the two methods are equivalent. 
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Figure 17:  Algebraic Development of Cross Polar Power Concept 

 
For application to the WSR-88D, NCAR modified the original cross polarization methods and collected data in 

what came to be called the “PPI Mode” for its similarity to the plan-position indicator type of scanning.  This 
approach used alternating 360 degree scans, first one polarization, say H, followed by another scan using the 
alternate (or V) polarization.  This meant that the H and V cross pol returns were not obtained as close in time as in 
the fast alternating mode.  However, NCAR found that on the S-pol radar, the times were still sufficiently close to 
conclude that cross pol could yield the system Zdr bias values equivalent to the vertical pointing method. 

 
Based on NCAR’s results on S-pol, the ROC began implementation of the cross polarization power method on the 

WSR-88D.  For evaluation purposes ROC software engineers modified the sun scan utility to generate the NCAR 
designed box scans and added utility code to control the radar in order to collect the sequential single polarization 
clutter powers.  The following section describes the results from collecting cross polarization data on the test bed 
radars in Norman, Oklahoma (KCRI and KOUN). 

 
In the course of implementing and testing the WSR-88D version of cross polarization power, the ROC and NCAR 

teams met several significant challenges.  There were issues related to the cross polarization clutter power ratios, the 
solar scan derived reflector bias, and the transmitter power monitoring.  The implementation issues are related to 
differences in the research radar (S-Pol) and the WSR-88D (Ice, 2013).  The two radars have significant differences 
in antenna controls, transmitter power division, and receiver hardware.  The WSR-88D antenna cannot be positioned 
and monitored to the same level of accuracy as the S-Pol antenna.  The control characteristics of the WSR-88D 
pedestal present unique challenges for obtaining the clutter power ratios, essentially affecting the cross polar 
reciprocity assumption.  This yields clutter power ratios with higher variances than those obtained with S-Pol (Ice, 
2013). While S-Pol features a power division functionality that allows for the cross polar tests to be conducted at the 
same effective transmission power level used during operations, the WSR-88D features a variable phase power 
divider.  This does not allow for the cross polar power testing to be done at the same power level as operations, and 
thus the ratios of the test and operational powers must be measured.  This leads to complications, and increased 
error, that the engineering team must overcome (Meymaris, 2013). 
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One final note regarding solar scanning is that it is important to conduct the sun scans with the conditions within the 
radar hardware established as close to operational as possible.  As a specific example, the team discovered that the 
results of the solar scan antenna bias testing were dependent on whether the transmitter was operating or not.  This 
was attributed to the temperature of the circulators, which were somewhat warmer when the transmitter was 
operating.  As a result, all solar scans are obtained with the transmitter operating.  This does lend some complication 
to the design of the solar scanning process and data collection to ensure returns from external targets do not 
contaminate the result.  For example, clear air conditions are best and the sun scans are restricted to elevations above 
10 degrees. 
 
7.2  Hardware Measurements 
 

The 30 dB test couplers located at the calibration reference plane are key components that have to be carefully 
characterized.  As seen in equations 2 and 4, the loss factors for these couplers are components of the overall 
calibration determination.  Uncertainties in these measurements translate directly into errors in the ZDR bias 
measurement.  The contractors that supplied the RF components believe the factory measurements are accurate 
within about 0.02 dB.  However, examination of the plots in Figure 2 cast some doubt on this expectation.  The 
variation of the measured loss factors varies by much more that 0.02 dB between adjacent points as the test 
equipment scanned over the frequency band in 5 MHz steps.  The ROC team is investigating the uncertainty of this 
process and will conduct further testing on selected couplers.  This investigation will include statistical analysis as 
part of an effort to reduce the variance of this data.  An example of this type analysis is shown in Figure 2 where the 
green line represents a quadratic curve fit to the data.  This curve is more representative of the theoretical 
performance of these Moreno Cross Guide couplers and is an attempt to smooth out the apparent instrumentation 
noise.  In another example, the red dashed lines are plots of a 7-point moving average curve. 

 
The ROC team plans to establish a rigorous test program for these couplers.  The statistical analysis results will be 

compared to the new hardware tests conducted in the ROC Engineering Branch laboratory.  The goal is to establish 
the accuracy of the statistical analysis through this comparison.  If that succeeds, then the loss factors for all the 
fielded systems can be updated based on the statistics rather than requiring expensive and time consuming field 
tests. 
 
7.3  Noise Estimation 

 
Accurate measurement or estimation of the noise power in both channels is critical to maintaining acceptable bias 

levels in the ZDR product.  In fact, accurate handling of noise contamination is central to the production of high 
quality data.  The community has focused significant effort on the measurement and removal of noise in 
polarimetric systems (Unal, 2012).  There is some indication that precise noise measurements could serve as another 
indicator of receiver channel bias.  The ROC team will explore this concept. 

 
As seen in the example of Figure 14, issues with the hardware and external interference can result in noise 

measurements of dubious quality.  Because the channel power estimates are corrected for the assumed noise powers, 
poor noise measurements can result in a bias in power ratios, or ZDR, especially for low signal to noise ratios.  In the 
WSR-88D baseline system, the noise is measured for both channels during the re-trace period at the end of each 
volume scan, with the measurement conducted at the highest elevation angle available.  This is in order to obtain an 
estimate as close to “blue sky” conditions as possible.  However, the noise powers are higher at lower elevations due 
to external features such as ground clutter and the estimates must be adjusted for lower elevations.  This is done by 
means of an off-line test that scans the radar’s environment.  The noise adjustment calibration itself can be corrupted 
by interference and a noisy local environment, resulting in various errors in the noise power estimates. 
 
The solution to vulnerabilities in noise measurements is to infer the noise powers from the data itself, typically in a 
radial by radial basis.  This has been done in the WSR-88D (Ivić, 2013).  Figure 21 is an example of the H and V 
channel noise powers estimated on a per-radial basis.  The upper two panels in Figure 21 depict the radially 
estimated noise power for both H and V channels as a function of azimuth.  This is for the Tucson, Arizona, WSR-
88D.  The variation of the noise power of more than 1 dB from the baseline measured noise is due to the radar beam 
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scanning the mountains near Tucson. This demonstrates the clutter environment’s effect on noise.  The bottom panel 
displays the noise power difference between the channels and depicts a slight effect as the beam scans the 
mountains, demonstrating some polarization dependent noise components. 

 
 

 
 

Figure 21: Noise Power Estimates on a Per-Radial Basis 
 
 
7.4  External Target Measurements 
 

The ROC team developed several methods for estimating the calibration state of the network radars.  This work 
has been well described recently (Zittel, 2014; Hoban, 2014; Cunningham, 2013).  These methods use hydrometeors 
(light rain and dry snow) and Bragg scatter.  By using these methods, the ROC has determined that approximately 
60% of the WSR-88D sites have external target derived bias estimates of within ±0. 2dB.  Figure 22 is one example 
of an analysis product from the external target bias estimation process.  It is a histogram of the bias estimates 
derived from analyzing returns from dry aggregated snow during the month of March 2014.  This method is based 
on well characterized properties of dry snow (Ryzhkov, 2005, 1998).  As Figure 22 shows, about 24 % of the sites 
have estimated bias values of less than 0.2 dB while 15 % have estimated bias values of greater than 0.2 dB. 

 
At this time, the ROC team has not determined if the variance in the bias estimation histograms is due to the natural 
variation in the external target characteristics or due to some other related phenomena such as contamination by 
other types of scattering targets.  The variance could also be showing the uncertainty of the engineering calibration 
measurements.  If the histogram were viewed as following a Gaussian distribution, then the variance seems to be 
between 0.2 and 0.3 dB.  As a reminder, the NCAR studies concluded that engineering type calibrations were 
expected to exhibit an uncertainty of about 0.25 dB, and the network performance seems to fit that expectation.  The 
observed results are likely due to a combination of the uncertainty of the external methods and the uncertainty of the 
engineering calibrations.  
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through careful planning for all Research-to-Operations (R2O) processes.  The lessons learned in this project and 
other recent enhancements are being applied to future work. 

 
It is apparent from the US NEXRAD program efforts, and from reports of others in the community, that a multi-

faceted, comprehensive, and centrally managed approach is needed in order to achieve the remarkably stringent 
requirements for differential reflectivity calibration for operational networks.  In recent years, other national network 
operators and researchers have reported on their efforts to implement continuous data quality projects (Frech, 2013; 
Figueras I Ventura, 2012; Gourley, 2006).  These all use combinations of equipment measurements and continuous 
monitoring with external targets.  Technical investigators around the community should continue to consider ever 
more creative ways to calibrate their radar networks, perhaps leveraging the increasing knowledge base of 
microphysical parameter behavior.  One example is the proposed use of observed deviations in the expected vertical 
profile of differential reflectivity as a bias indictor (Bechini, 2008), again an external target method.  Other types of 
external targets have been proposed.  The use of metal calibration spheres, either tethered (Williams, 2013) or free 
floating (Pratte, 2005; Ice, 2005), has been proposed and some testing has been done.  Bouncing the radar signal off 
of the lunar surface has also been investigated (Melnikov, 2013b; Pratte, 2005).  As it turns out, measurable returns 
from the moon can be obtained with S-Band weather radars. 

 
The lessons learned from the past ten years of investigation and testing can be summarized in a set of rules that 

may be helpful for those contemplating the design and development of new polarimetric radars.  The rules are: 
 
 
1.  Consider calibration in all aspects of requirements development and design for calibration. 
 
2.  Polarimetric weather radars should be as simple as possible, but not simpler (to paraphrase Dr. Einstein). 
 
3.  Monitor all system parameters continuously 
 
4.  Check the “Checker”…or, monitor your built-in-test equipment carefully. 
 
5.  Create an error budget, and be aware of the effect of each component on the budget. 
 
6.  Employ multiple measurements, external as well as internal. 
 
7.  Get help!  Make sure to consider the community’s experiences. 
 
8.  Calibrate how you operate. 
 
9.  Treat calibration as a network problem, compare radar performances across the fleet. 
 
10.  Question everything, especially manufacturer’s data. 
 
 
The ROC team continues to develop better methods of engineering calibration coupled with increased use of 

external methods for evaluating the state of each network radar’s calibration.  The ROC will develop four distinct 
projects aimed at improving calibration.  The first efforts are focusing on the test software that supports calibration.  
The engineering teams are simplifying procedures and automating some tasks to reduce errors.  The second project 
is developing the external target monitoring methods, i.e. migrating the research capability to an operational mode.  
This will allow personnel in the field as well as network managers to assess the performance of each radar in near-
real time.  The third project is for engineering investigations into the hardware, and includes the goal of reducing the 
uncertainty of the coupler loss measurements.  Eventually the fourth project will focus on using external target 
measurements to adjust the base differential reflectivity estimates. 

 
It’s clear that attaining the goal of reducing the uncertainty of ZDR estimates to below 0.1 dB will not be solved by 

any one, or by any few, methods.  It requires a holistic approach, leveraging advances in engineering with novel uses 
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of external targets.  The ROC team plans to continue to address the issue of calibration with a number of diverse 
efforts to ensure the quality of NEXRAD polarimetric data is as good as it can be. 
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