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1. Introduction 

In this extended abstract, we show the development of a new statistical tool which produces probabilistic 
outlooks of seasonal precipitation anomaly categories over Africa.  Called the Seasonal Performance 
Probability (SPP), it quantitatively evaluates the probability of precipitation to finish at predefined percent of 
normal anomaly categories corresponding to below Average (<80% of Normal), Average (80-120% of 
Normal), and Above-Average (>120% of Normal) conditions.  This is accomplished by applying Kernel 
Density Estimation (KDE) methods to compute smoothed, continuous density functions based on more than 
30 years of historical precipitation data from the Africa Rainfall Climatology Version 2 (ARC2) dataset 
(Novella and Thiaw, 2013).   Also presented here are various KDE parameterizations tests to determine 
optimality of density estimates, and thus, performance of SPP for operational monitoring. Verification results 
using Heidke Hit Proportion (HHP) scores from 2010-2014 suggest that SPP reliably provides probabilistic 
outcomes of seasonal rainfall anomaly categories by early to mid-stages of rains seasons for major monsoon 
regions in east, west and southern Africa.  SPP has been a useful tool in operational climate monitoring at 
CPC International desks, where it has helped to provide early warning guidance for developing drought 
situations, and other related hydrometeorological climate anomalies.  This is expected to promote better 
decision making in food security, planning and response objectives for the United States Agency for 
International Development / Famine Early Warning Systems Network (USAID/FEWS-NET). 

2. Data and methods 

This new SPP product solely uses Africa Rainfall Climatology version 2.0 (ARC2) precipitation estimate 
data over Africa.  The features of ARC2 are suited for the development and application of SPP, since its daily 
resolution and 30+ year historical record allow for a sufficient number of years to quantitatively determine the 
probability of seasonal rainfall performances.  For operational monitoring at CPC, meteorologists have 
designated six seasonal timeframes over three main domains in Africa. These include the East Africa domain 
encompassing the Mar-May, Jun-Sep, Feb-Sep, and Oct-Dec timeframes, as well as, the West Africa and 
Southern Africa domain, covering the May-Sep and Oct-May timeframes, respectively.  These timeframes 
have been useful in capturing the evolution of monsoon rainfall, as they also cover pertinent agricultural 
calendars and cropping activities on the ground for famine early warning systems. 

a. Kernel Density Estimation 

The main purpose in SPP lies in determining the probability density function (PDF) of historical 
precipitation rates from a current point in a season to the end of season.  SPP applies Kernel Density 
Estimation (KDE) methods on the ARC2 30+year climatology in order to acquire a more refined, smoother 
estimate of the PDF.  Using a set of observations (x1, x2, … xn) from some distribution with and unknown 
density, f(x), the KDE is defined as: 
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where n equals the number of historical 
observations, x(i) are the historical 
observations,  and h is the bandwidth 
parameter.  The selection of the 
bandwidth parameter, h, and kernel type, 
K, both have a marked effect on the 
shape of the estimated density, and more 
discussion is included later in this 
section of the paper.  The main 
advantage of KDE resides in how it 
evaluates point-wise contributions (i.e. 
distances between x and x(i)), and where 
the summation of kernels converges 
faster to the true underlying density for 
continuous random variables like 
precipitation.  If we let x be an array of 
hypothetical precipitation rates (from 0 
to Infinity) required to satisfy an array 
of percent of normal rains by the end of 
season, then this will not only render a 
smoother estimate of the density 
function, f(x), but the probabilities for 
each hypothetical precipitation rate can 
then be determined.   Taking the integral 
of f(x) results in the Cumulative 
Distribution Function (CDF), and it is here where probabilities within specified intervals along F(x) can be 
ascertained and plotted to render a probability value for each point in space.  

To illustrate, let’s suppose the following for a given location where: 1) the current seasonal accumulated 
total is 100mm at Tcurrent, 2) the current seasonal climatological normal total is 150mm at Tcurrent, 3) the end-of-
season climatological normal total is 500mm at Tfinal, and, 4) the number of days remaining in the season 
equals 60.  While the current seasonal percent of normal anomaly is well below-average at 66%, we would 
therefore find that threshold precipitation rates of 5.00 mm/day, 6.66 mm/day, and 8.33 mm/day are required 
for the remainder of season to finish at least 80%, 100%, and 120% of normal, respectively.  Using a sample 
set of historical precipitation rates (i.e. observations), x(i), over the last 30 years (1983-2012) from Tcurrent to 
Tfinal, as well as, an array of hypothetical precipitation rates required in the future, x, to define the PDF, 
plotting the Below-Average (brown) and Above-Average (green) threshold rate points along the x axis on 
both the PDF and CDF curves (Fig. 1), shows that the highest probability (~50%) exists for seasonal rainfall 
to be in the “Below-Average” category (<80% of Normal) by the end of the season.  Also evident is the 
second highest probability (~28%) for seasonal rains to finish in the “Above-Average” category (>120% of 
Normal), and the lowest probability (~22%) to finish in the “Average” category (>=80% and <=120% of 
Normal) by the end of the season.   
b. Parameterization: Kernel Type & Bandwidth Selection 

In KDE literature, studies by Rajagopalan et al. (1997) and Rajagopalan et al. (1993) have referenced the 
implementation of the Epanechnikov kernel instead of using a Gaussian kernel when using precipitation data 
since it has inherent bounded support to minimize potential boundary effects.  However, these studies also 
showed that boundary issues are ameliorated through the use of a log transformation within the kernel as it 
prevents any “leakage” of the probability mass extending beyond the boundary (Rajagopalan et al., 1997).    
Regardless of kernel type selected, this log transformation was considered necessary for SPP to properly 
handle the fixed lower bound of precipitation, so that f(x) = 0 where x < 0, and f(x) still integrates to one.  For 
bandwidth selection, the method that is most commonly referenced in literature is Silverman’s Rule-of-
Thumb (Silverman, 1986).  However, some studies have suggested that this method may not be aptly suited 

Fig. 1  Example of the probability density function (upper), 
cumulative distribution function with SPP probabilities 
(lower) estimated from KDE from a sample set of historical 
precipitation rates for the remainder of the season. 
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for mutli-modal distributions, and underperformance has been linked to its heavy reliance to assumptions of 
the underlying distribution (Rajagopalan et al., 1997).  As an alternative, the “plug-in” or recursive method of 
(Sheather and Jones, 1991) (hereafter referred to as SJ) has also been widely described in KDE associated 
literature.  In light of all findings related to the kernel type and bandwidth methods, log transformed Gaussian 
and Epanechnikov kernels, as well as, the Silverman and SJ bandwidth methods were evaluated in verification 
analysis to determine optimality for SPP in the following section. 

3. Results 

a. Historical reprocessing and verification 

In determining the optimal KDE parameters for SPP in operational monitoring, the SPP algorithm was 
reprocessed using kernels and bandwidth methods, as highlighted in the previous section, over several key 
monsoonal periods and regions in eastern, southern and western Africa from 2010 to 2014.  No reprocessing 
prior to 2010 was performed, since SPP still requires a high number of years to generate densities.  For this 
exercise, verification consisted of calculating the Heidke Hit Proportion (HHP) scores for probabilistic 
forecasts (IRI, 2013). This verification metric was regarded as the most straight-forward and relevant in 
forecasting anomaly categories corresponding to below-average, average, and above-average seasonal rainfall.  
HHP awards credit (hits) where the highest categorical SPP probability matches the observed category by the 
end of season. Hits are then summed and divided by the total number of forecasts in space.  

Averaged HHP scores (from 2010-2014) using various parameterizations in SPP for all seasons and 
regions in shown in Table 1.  The most salient observation is that there doesn’t appear to be any distinct 
advantage in using a particular kernel, or a particular bandwidth method in terms of improved HHP 
verification scores, since differences in HHP scores between kernel types and bandwidth methods appear to 
be quite negligible at seasonal stages.  By the end of the first month and through mid-point of each season, 
HHP scores range between 0.6 and 0.7 indicating that at least 60% of the SPP probability fields correctly 
verified in their respective anomaly category.  While not perfect, these scores suggest a level of confidence 
for operational monitoring, where we can 
provide reasonable guidance of a 
seasonal rainfall outcome to users before 
halfway through the season. Based on 
these results, the Gaussian kernel and 
Silverman’s bandwidth method was 
selected for operational SPP 
implementation purely due their 
efficiency in daily processing. 

b. SPP case studies 

Perhaps the most well-known 
drought case study in recent years was 
the severe drought that devastated East 
Africa from 2010-2011. In our 
monitoring of precipitation, ARC2 
accurately depicted the onset of the 
drought during the Oct-Dec rainfall 
season, and captured the extent of 
worsening dryness conditions due to poor 
rains during the following March-May 
rainfall season in the same region 
(Novella and Thiaw, 2013).  Figs. 2a-d 
show the reprocessed SPP for the Oct-
Dec, 2010 rainfall season in East Africa.  
After one month (1/3) into the season, 

Table 1 Averaged HHP scores from 2010-2014 using various KDE 
parameterizations in SPP for all seasons and regions 
(h1=Silverman, h2=SJ). 
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the percent of normal ARC2 
rainfall on November 1st, 2010 
(Fig. 2a) begins to depict 
developing dryness throughout 
much southern Somalia, 
southwestern Ethiopia, eastern 
Kenya, and across much of 
Tanzania.  For areas that 
experienced rapidly developing 
dryness, SPP probabilities are 
highest in the below-average 
category (Fig. 2c), with 80% to 
90% probabilities over areas 
where climatologically, lesser 
amounts of rainfall are expected 
for remainder of season, thus 
reflecting the increased likelihood 
of drought development and 
persistence before the end of the 
season.  Analysis of the final 
season percent of normal rainfall 
(Fig. 2b) and HHP verification 
score map (Fig. 2d) on November 
1st, 2010 indicate that nearly 70% 
of the seasonably active areas in 
east Africa had SPP probabilities 
that correctly verified in the 
respective anomaly categories.  

In a more recent case study, 
the core of the southern Africa 
rainy season, Dec, 2014 – Feb, 
2015 has been characterized as 
being poor and highly erratic.  This had presented a greater challenge to SPP during operational monitoring 
due to unusual reversals in the monsoon circulation that had been observed throughout the course of the 
season.  By the end of February, a dipole anomaly pattern emerged with the southeastern portion of the Africa 
continent having experienced well above-average rainfall, and below-average moisture conditions prevailing 
throughout much of southwestern Africa (Fig. 3a).  However, the evolution of this dipole was not straight-
forward nor gradual as one might expect.  In the middle of December, much of southeastern Africa (i.e. 
eastern Zambia, Malawi, and western Mozambique) had experienced a delayed onset of the monsoon, raising 
concerns of anomalous dryness persisting into the season.  SPP probabilities for below-average Dec-Feb 
rainfall began to increase and expand throughout the region, until extreme rains fell in late December, which 
led to an abrupt reversal in the SPP probabilities between the above and below average anomaly categories.  
By early January 2015, SPP probabilities over much of southern Angola, northern Namibia and the Caprivi 
Strip did not correctly verify as being below-average.  Only after an extended dry spell had transpired during 
January in the region did SPP point to a high probability for below-average rains by the end of the season.  In 
Figs. 3c-d, we see the SPP probabilities and HHP hit map illustrating nearly 70% of the seasonably active 
areas in southern Africa had SPP probabilities that correctly verified in the respective anomaly categories by 
January 15th.  

c. SPP real-time operational output 

Consistent with the real-time, daily maps and time series products updated at CPC, the SPP algorithm 
consists of generating probabilistic output for every gridded pixel, every day over Africa.   In an effort to 

a b 

c d 

Fig. 2  East Africa spatial maps of (a) percent of normal seasonal rainfall 
anomaly on Nov 1st, 2010, (b) the final percent of normal seasonal 
rainfall anomaly captured Dec 31st, 2010, (c) SPP reprocessed on 
Nov 1st, 2010, (d) Heidke Hit Proportion (HHP) of verified hits 
(green) and misses (red) on Nov 1st, 2010. 
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further relax an intense 
computational environment, the 
resulting SPP spatial fields are 
aggregated from a 0.1° to 0.25° 
resolution.  To best cover the 
seasonality of precipitation over 
Africa, users will be able to 
choose any base period spanning 1 
to 4 months of ARC2 accumulated 
rainfall, and a probabilistic 
outlook period ranging from the 
end of the current month out to 3 
months.  SPP output consists of 
single map depicting all 
probabilities corresponding to 
Below-Average (<80% of 
Normal), Average (>=80% and 
<=120% of Normal), and Above-
Average (>120% of Normal) 
rainfall for the end of every 
projection period. 

4. Conclusions 

This paper describes a new 
statistical tool, called SPP, which 
computes spatial probability maps 
for seasonal precipitation to finish 
at rainfall anomaly categories 
corresponding to Below Average (<80% of normal), Average (80-120% of normal), and Above-Average 
(>120% of normal) over Africa.  These computations are achieved through the use of Kernel Density 
Estimation (KDE) methods which yield probability density functions (PDF’s) and cumulative density 
functions (CDF’s) based on 30+ years of historical ARC2 precipitation for the remaining duration of a 
monsoon season.  The daily, real-time availability of ARC2 used in operational monitoring also permits SPP 
output to be disseminated to users on the same basis. 

Reprocessing and verification results indicate that, on average, at least 60% of the SPP probability fields 
had correctly verified in their respective anomaly category.   This suggests there is a reliable degree of 
confidence in SPP for providing the outcome of seasonal rainfall during operational monitoring.  Such 
information is expected to translate into better decision making in food security, planning and response 
objectives for USAID/FEWS-NET. 
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Fig. 3  Southern Africa spatial maps of (a) percent of normal seasonal 
rainfall anomaly on Jan 15th, 2015, (b) the final percent of normal 
seasonal rainfall anomaly captured Feb 28th, 2015, (c) SPP 
reprocessed on Jan 15th, 2015, (d) Heidke Hit Proportion (HHP) of 
verified hits (green) and misses (red) on Jan 15th, 2015. 
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