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1. Introduction 

Because snow is an important boundary forcing in the global climate system, much effort has been aimed 
at prediction and sources of predictability of snow cover variability and its climatic influences (e.g., Yang 
1996, Serreze et al. 1997, Corti et al. 2000, Bamzai 2003, Bojariu and Gimeno 2003, Sobolowski and Frei 
2007). Snow physical properties such as albedo, thermal conductivity, emissivity and latent heat flux affect 
atmospheric circulations and render snow as a potential source of climate predictability on regional to 
hemispheric scales. Snow water equivalent (SWE), defined as the depth of water that would result if the mass 
of snow melted completely, is particularly useful for climate predictability as it contains regional information 
about previous climate anomalies (e.g., temperature and precipitation) and can influence future climate on 
seasonal to longer time-scales. SWE is also essential to river and flood forecasting, and thus water resources 
planning and hazard mitigation (e.g., droughts and floods), as it can be factored in with precipitation to 
determine the amount of runoff that might go into rivers and streams. Conversely, atmospheric circulations 
affect snowfall, snow mass and spring runoff predictability (e.g., Sobolowski and Frei 2007). For example, 
snow anomalies respond to climate variability patterns such as the El Niño Southern Oscillation (ENSO), 
which is the largest single source of interannual variability in the tropics and is thus a major source of climate 
predictability with extratropical reach through its teleconnections (Groisman et al. 1994, Yang 1996, Ferranti 
and Molteni 1999, Martineu et al. 1999, Corti et al. 2000, Shaman and Tziperman 2005, Wu et al. 2012).  

Here, we highlight key results on the potential and actual predictability of SWE historical forecasts 
(hindcasts) in the Fourth-Generation Coupled Climate Model (CanCM4), which is employed with CanCM3 to 
produce ensemble multi-seasonal forecasts by the Canadian Seasonal to Interannual Prediction System 
(CanSIPS; Merryfield et al. 2013) and contributes to the North American Multi-Model Ensemble (NMME; 
Kirtman et al. 2014).  Specifically, we summarize sources and behaviour of potential and actual predictability 
of SWE hindcasts in CanCM4 at short and long time leads. Previously, the ability of CanSIPS to provide 
realistic initial conditions for snow cover forecasts was examined by Sospedra-Alfonso et al. (2015a). 

2. Data and  methods 

CanCM4 was developed at the Canadian Centre for Climate Modelling and Analysis (CCCma). With 
CanCM3, it has been employed by CanSIPS to provide Environment Canada's operational seasonal forecasts 
since late 2011. CanCM4 is based on the Canadian Fourth-Generation Ocean Model (CanOM4), the Canadian 
Fourth-Generation Atmospheric General Circulation Model CanAM4 (also known as AGCM4), version 2.7 
of the Canadian Land Surface Scheme (CLASS) and a sea ice cavitating fluid model. Details and relevant 
bibliography about these model components can be found in Merryfield et al. (2013). 

In CanSIPS, each of the 10 CanCM4 forecast ensemble members is initialized from a separate 
assimilating run in which atmospheric winds, temperature, and humidity as well as sea surface temperature 
and sea ice concentration are constrained near observed values. Forecast initial conditions for the land 
component including snow cover are determined by the response of CLASS to forcing from model 
atmospheric fields constrained by 6-hourly reanalysis data. Thus, SWE initial conditions differ among 
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ensemble members. CanSIPS hindcasts 
are initialized at the beginning of each 
month during a multidecadal hindcast 
period and have a 12 month range. 

We consider CanCM4 SWE 
hindcasts (1981–2010) in the Northern 
Hemisphere on the approximately 2.8°  
atmospheric/land surface model grid. 
We employ the following metrics: 

 • Potential predictability (PP) of 
monthly mean SWE in CanCM4 is 
examined by employing analysis of 
variance (ANOVA) (e.g., von Storch 
and Swiers 1999) on the 10 ensemble 
members to estimate the fraction of 
internnual SWE variability that is 
potentially predictable. In this 
framework, the total interannual variability of SWE is partitioned into two components; (1) unpredictable 
chaotic fluctuations or noise, and (2) potentially predictable variability or “signal” variance associated with 
internal climate variability modes (e.g., ENSO) and/or external forcing (e.g., solar variability, explosive 
volcano eruptions, anthropogenic radiative forcing). The potential predictability of SWE is defined as the 
ratio of the signal to the total variance. 

• Persistence of initial anomalies in CanCM4 SWE forecasts is given in terms of the temporal 
autocorrelation (AC) of predicted SWE anomalies, which is defined as the correlation between SWE forecast 
anomalies and the initial ensemble mean anomaly, averaged across the ensemble. The initial ensemble mean 
anomaly is employed instead of initial anomalies of individual ensemble members to account for uncertainty 
in the initial conditions of SWE anomalies, which results in a degradation of autocorrelation at the zero lead 
time. AC2 is a measure of the fraction of SWE variability that can be linearly attributed to the initial SWE 
anomalies, and can be compared with PP of SWE to assess the contribution of the memory of snowpack 
initial conditions to the potential predictability. 

• ENSO influence on SWE is investigated by regressing CanCM4 forecast monthly mean SWE, surface 
temperature and precipitation on the monthly Niño 3.4 index (defined as the averaged sea surface temperature 
anomaly over the Pacific Ocean region 5°S-5°N, 120°-170°W). 

• Actual skill in CanCM4 SWE forecasts is examined by computing the temporal anomaly correlation 
coefficient (ACC) between forecasts ensemble mean and a blend of 5 SWE observation-based products 
(Blended-5) developed by Mudryk et al. (2015), re-gridded to CanSIPS resolution. Blended-5 combines SWE 
from (1) the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for 
Research and Application (MERRA; Rienecker et al. 2011), (2) the European Centre for Medium-Range 
Forecasts Interim Land Reanalysis (ERA-Interim/Land; Balsamo et al. 2013), (3) GlobSnow analysis, version 
2, developed through the European Space Agency GlobSnow project and produced by the Finnish 
Meteorological Institute (Takala et al. 2011),  (4) the Global Land Data Assimilation System Version 2 
(GLDAS-2) product (Rodell et al. 2004), and (5) the Crocus snow scheme driven by ERA-Interim (Brun et al. 
2013).   
3. Summary of results and discussion 

We identify two main sources of potential predictability and actual skill in CanCM4 SWE forecasts: (i) 
persistence of initial SWE anomalies, and (ii) SWE response to climate variations that are potentially 
predictable at longer time-scales, including ENSO. 

Fig. 1  Scatter plots of Northern Hemisphere spatial means of AC2 
for CanCM4 (vertical axis) vs (a) PP for CanCM4 (horizontal 
axis) and  (b) AC2 for Blended-5 (horizontal axis) for each 
month and lead time in the forecast. Dots correspond to target 
months and colors denote lead times. 
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SWE depends cumulatively on 
previous snowfall and snowmelt events, 
therefore this “memory” in the form of 
anomaly persistence should contribute 
to PP. Spatial averages of PP and AC2 
over the Northern Hemisphere tend to 
be large and comparable to each other 
for short lead times (0-2 months) and 
much smaller for longer leads (over 4-
month), with values that depend on the 
target month and initialization date (Fig. 
1a). The short-range behaviour of PP is 
thus strongly determined by the 
persistence of initial SWE anomalies, 
particularly in regions of mature 
snowpack and/or initialization times in 
the core of the snow season. For 
example, for March-averaged SWE 
forecasts at 1-month lead (i.e., 
initialized in February), which is prior 
to the start of the snowmelt and long 
after the snow onset in the mid-latitudes, 
high PP (> 0.8) occurs in the higher 
latitudes (> 60°N), western Canada, and 
the Karakoram region (Fig. 2a). 
Geographic patterns of AC2 (not shown) 
indicate that these regions are 
characterized by high SWE anomaly 
persistence. 

PP determined by SWE anomaly 
persistence tends to decrease with lead 
time as the result of a relative increase 
in noise variance (due to ensemble 
dispersion), and with decreasing 
latitude and/or elevation due to a 
relative decrease in signal variance associated with shorter snow seasons. For example, PP of March-averaged 
SWE at 11-month lead is  insignificant (< 0.1) in most of the Northern Hemisphere, with the exception of the 
Pacific Northwest, the southern Rocky Mountains and Karakoram (up to ≈ 0.5), and a few scattered regions in 
Asia and North America (Fig. 2b). 

Spatially averaged AC2 in CanCM4 SWE forecasts behaves similarly to that of the verifying observations 
(Fig. 1b). This suggests that CanCM4 should capitalize on SWE anomaly persistence as a source of actual 
skill, at least for short lead times. For example, ACC2 for March-averaged SWE forecasts at 1-month lead 
(Fig. 2c) has similar geographic patterns as PP (Fig. 2a), except in the Tibetan Plateau where PP is relatively 
high but ACC2 is <0.1. As for PP, ACC2 tends to decay with lead time and is statistically insignificant at 11-
month lead in most of the Northern Hemisphere, with the exception of the Pacific Northwest, the Karakoram 
region and a few scattered regions in Asia and North America (Fig. 2d).  

The long-range behaviour of PP in CanCM4 (e.g., Fig. 2b) is likely the result of SWE response to ENSO 
variability, combined with the ability of the forecasts to predict ENSO. Regression patterns of December and 
March-averaged SWE in forecasts initialized in the preceding April show that the regions where March-
averaged SWE is potentially predictable (Fig. 2b) largely correspond with those where SWE anomalies 
associated with ENSO variability are statistically significant (Figs. 3a, b). 

Fig. 2  (top) PP and (bottom) ACC2 against Blended-5 of CanCM4 
March-averaged SWE forecasts at (left) 1-month and (right) 
11-month lead times indicating the time from forecast initial 
values. 
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SWE response to ENSO is likely driven by 
ENSO influences on temperature (T) and 
precipitation (P). Because of the SWE anomaly 
persistence discussed earlier, T and P influence 
on SWE is not limited to contemporary months 
but has contributions from previous months in 
the snow season (e.g., Sospedra-Alfonso et al. 
2015b). For example, regression patterns of 
December and March-averaged T and P 
corresponding to the forecasts initialized in 
April (Figs. 3c-f) reveal that negative anomalies 
of March-averaged SWE (Fig. 3b) in western 
Canada are likely the result of positive T and 
negative P anomalies already present in 
December (Fig. 3c, e) and November (not 
shown). This is likely the reason for the 
increased amplitude of ENSO-related SWE 
anomalies in March relative to December (Fig. 
3a, b). Positive anomalies of December-
averaged SWE (Fig. 3a) found in the southern 
U.S. Rocky Mountains are most likely due to 
negative T and positive P anomalies in 
December (Fig. 3c, e) and November (not 
shown). In the Karakoram, statistically 
significant positive anomalies of December-
averaged SWE (Fig. 3a) are associated with 
positive P anomalies in December (Fig. 3e) and 
November (not shown), despite the slightly 
positive T anomalies in the region. These results 
support the idea that relatively high values of 
PP (Fig. 2b) and actual skill (Fig. 2d) for 
March-averaged SWE in the western North 
America and the Karakoram at 11-month lead is 
a signature of ENSO teleconnections. 

4. Concluding remarks 

CanCM4 forecasts of SWE can display 
appreciable potential and actual skill depending 
on region, target month and initialization date. 
The behaviour of PP of SWE at short leads can 
be largely explained in terms of persistence of 
initial anomalies. Exploiting this source of PP 
as actual skill thus requires a reasonably 
accurate initialization of SWE, as occurs in 
CanSIPS (Sospedra-Alfonso et al. 2015a). The 
relative contribution of anomaly persistence to 
PP diminishes at longer lead times, implying 
that ability to predict future climate anomalies 
(e.g., temperature and precipitation anomalies) 
contributes increasingly to PP as lead time increases.  For long leads, PP of CanCM4 SWE forecasts appears 
to be mainly the result of SWE response to ENSO variability, combined with the ability of the forecasts to 
predict ENSO.    

Fig. 3  Regressions of CanCM4 predicted (left) December 
and (right) March averaged (a, b) SWE, (c, d) surface 
air temperature and (e, f) precipitation against 
CanCM4 predicted Niño 3.4 index for the forecasts 
initialized in April. Lead times are (left) 8 months and 
(right) 11 months. Cross hatched regions correspond 
to correlations >0.3. 
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Disclaimer.  This note complements a detailed work on potential and actual predictability of snow in 
CanSIPS submitted for publication in the Journal of Hydrometeorology. 
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