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1.  Introduction 

The Climate Prediction Center (CPC) began issuing probabilistic, two-class forecasts of 2-meter 

temperature (T2m) and precipitation (P) for the combined weeks 3-4 period (days 15-28) in September 2015.  

This product serves to bridge the gap between traditional extended range forecasts (days 8-14) and monthly 

forecasts.  The week 3-4 period has been typically thought to be one of low forecast skill, due to insufficient 

time for boundary conditions to take hold on a forecast, while dynamical guidance suffers from substantial 

growth of initialization errors. 

While dynamical model guidance will always play a substantial role in forecasting, statistical methods 

can potentially exploit signals from the initial climatic state that can uniquely inform subseasonal forecasters.  

For example, Riddle et al. (2013) and Baxter et al. (2014) revealed impacts of the Madden-Julian Oscillation 

(MJO) through subseasonal timescales on the circulation and T2m of North America.  Johnson et al. (2014) 

used a compositing method (detailed in next section) to support that non-linear combined influences of MJO, 

long-term trend, and the El Niño-Southern Oscillation (ENSO) could often produce skillful week 3-4 

wintertime U.S. T2m forecasts.  This work seeks to extend Johnson et al. (2014) to all seasons while 

incorporating P forecasts, and also to explore the impacts of ENSO/MJO linearity/non-linearity on week 3-4 

forecasts.  

2.  Data and methodology 

Training and cross-validation data for T2m (Janowiak et al. 1999) and P (Xie et al. 2010) are taken over 

running 3-month periods between 1982-2013 to evaluate days 15-28, with these same datasets utilized for 

verification purposes.  ENSO information is utilized in the form of the Oceanic Niño Index (3-month running 

mean Niño 3.4 region SST anomaly) and the daily Real-time Multivariate MJO (RMM; Wheeler and Hendon 

2004) index to characterize the MJO.   

The first methodology to investigate Week 3-4 predictability of T2m and P is the so-called “phase model” 

(PM) of Johnson et al. (2014), which closely follows traditional compositing methods.  In short, mean and 

variance shifts are quantified based upon the historical 15-28 day distributions of T2m and P for subsets of 

ENSO (three states - El Niño, Neutral, or La Niña following typical conventions), and the MJO (nine states – 

one for each conventional phase and another when the amplitude is < 1), with an additional mean shift 

associated with linear long-term trend.  A Gaussian probability density function (PDF) is assumed for the 

forecast distribution, with a fourth root transform utilized to increase normality for P, where the summed 

means (ENSO, MJO, and trend) and variances (ENSO and MJO) build the forecast PDF.  This PDF can then 

be compared to the climatological median values, to evaluate what proportion of the forecast distribution are 

above- and below-normal.  

While the former method yields differences in the forecast state based on ENSO, MJO, and trend it can 

often have abrupt forecast discontinuities when transitioning between climatic states (e.g. MJO phases 4, 5, or 

a weak MJO) while the solutions also fail to scale for potential impacts sourced from the amplitude of the 
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background climate state.  These 

shortcomings can be addressed 

through a multiple linear 

regression (MLR) framework, 

with predictands of T2m and P and 

standardized predictors of:  

RMM1 and RMM2 for MJO, the 

2-week mean Nino 3.4 anomaly 

from OISSTv2 (Reynolds et al. 

2007) for ENSO, and a daily 

index for linear long-term trend.  

The regression relationship is used 

to determine the mean shifts in the 

day 15-28 T2m and P distributions 

based on the initial climatic state, 

while the climatological variance 

is used in conjunction with a skill 

correction then used to build a 

Gaussian forecast PDF.  This PDF 

is then evaluated with respect to 

climatological values, as with the 

PM. 

All skill evaluations utilize 

the Heidke Skill Score (HSS), 

which is the difference of the 

number of correct forecasts and 

number of forecasts to be 

expected to be randomly correct 

(50% in a two-class forecast), 

divided by the difference of the 

total number of forecasts and 

number of forecasts expected to 

be randomly correct.  The HSS 

can range over ±100, with a score 

of 0 indicating no improvement 

relative to random chance while 

positive values indicate added 

value.  Cross-validation is 

performed using a leave-one-year 

out methodology.  

3. Cross-validation performance  

Cross-validation reveals both 

the PM and MLR on average 

across the U.S. are largely, and 

often significantly, skillful across 

a breadth of many initial ENSO 

and MJO states in multiple 

seasons for both T2m (Fig. 1) and P 

(Fig. 2).  For each predictand, 

embedded periods of enhanced predictability, evidenced by marked increases in HSS, or “forecasts of 

opportunity” exist (e.g. MJO phases 2-5 with a background La Niña during FMA).  Also notable is that skill 

Fig. 1  Hindcast T2m HSS spatially averaged for all U.S. grid cells via the 

PM (left column), MLR (center column) and difference between the 

two (right column) across MJO/ENSO base states and running 3-

month period.  Dots indicate statistical significance ≥ 95% via Monte 

Carlo Simulation. 

Fig. 2  As in Figure 1, but for P. 



HARNOS ET AL. 

 

 

3 

often exists in the absence of an active MJO and non-neutral ENSO state, including for P, where trends are 

assumed to hold a lesser impact.  

Comparisons can also be made between the relative performance of the PM and MLR, relating to the 

underlying assumptions used in building each statistical model (rightmost column of Figs. 1 and 2).  In 

general, the MLR (cooler colors) outperforms the PM (warmer colors) with the exception of late (early) 

boreal summer (autumn).  These differences between the two methodologies are generally statistically 

significant in both T2m and P.  This implies that the magnitude of large-scale teleconnections generally holds 

importance, and the linear assumption is reasonably well founded as utilized in the regression forecast.  This 

also suggests that the importance of predictand mean shifts in the forecast PDFs dwarfs that of variance shifts 

within MJO and ENSO states, as there is no variance adjustment relative to climatology in the MLR, whereas 

the PM does account for variance differentiation dependent upon the initial state.  Given the typically superior 

performance of the MLR relative to the PM and the similar drivers of each statistical method, it is reasonable 

to question about the necessity of the PM.  While rooted in similar information, the differing methodologies 

of the MLR and PM can often yield differing probabilistic forecasts for geographic regions, while one method 

is skillful and the other lacks skill (not shown) where the tool with greater HSS can be emphasized. 

4.  Real-time performance 

Results are presented here for the statistical guidance along with bias-corrected dynamical model 

ensemble guidance from several sources (CFSv2, ECMWF, and JMA) and official CPC outlooks for the 

“real-time” period since CPC began issuing Week 3-4 outlooks (18 September, 2015 - 8 July, 2016).  HSS 

values are reported for all grid points (i.e. equal chances in the official CPC outlooks have 50% taken as hits 

and misses to create a consistent point of comparison with guidance products the encompass all points).  

Figures 3 and 4 show the HSS values at the grid point level for T2m and P respectively over the real-time 

period for the five guidance sources and official CPC outlooks.  For T2m, HSS values are shown to be largely 

skillful, with domain average values typically in the 30-40 range, indicative of 65-70% of forecasts being in 

the correct category relative to normal.  For P, HSS values are lower with domain averages typically in the ±5 

range, values that are likely not robust given limited sample for the real-time period.  The worst performing 

forecast over the real-time period in both T2m and P comes from the PM, likely due to the lack of canonical El 

Niño impacts observed during 2015-2016.  Interestingly, the MLR seems to not suffer from the lack of 

typically observed ENSO impacts and performs closely to, or sometimes better than, dynamical model 

guidance and the official CPC outlooks.  

In evaluating Figures 3 and 4 one notes the consistent regions of high HSS (for T2m it is widespread 

outside the Southern Plains, for P it is focused in Alaska and the Northern/Central Plains) and low HSS (for 

T2m the Southern Plains, for P the Southwest) for all forecasts with the exception of the PM.  It is worth 

exploring whether there are possible co-dependent relationships between the dynamical and statistical 

Fig. 3  T2m HSS values for the listed dynamical and statistical guidance and official CPC outlooks.  U.S. 

average values shown in panel titles. 
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guidance, with the official outlooks having a clear dependency given that they are based on the 

aforementioned guidance.  Figure 5 shows the time series of HSS spatially averaged across the U.S. for each 

of the forecast products over the real-time period.  With the exception of the PM for T2m it is apparent that 

dynamical and statistical guidance tends to cluster closely together on a weekly basis.  Combined with 

Figures 3 and 4, these analyses suggest limited novel information between the dynamical models and 

ENSO/MJO/trend-based statistical guidance for the Week 3-4 timeframe.  An analysis of the correlation 

coefficient at the grid-scale level of the forecast probabilities for T2m and P of the weekly dynamical model 

forecasts with the MLR for the real-time period reveals several broad regions with values ≧0.6 (not shown).  

For T2m these regions vary, and appear closely tied to dynamical model representation of long-term trend, 

while for P the highly correlated regions are focused in the west and south, regions where ENSO has a 

substantial footprint.  Altogether, such analyses suggest limited novel information being provided from 

dynamical model guidance relative to the ability of the ENSO/MJO/trend baseline to characterize variance, 

and instead the model forecasts appear to be largely derived upon the model’s representation of impacts from 

the latter modes of variability.  Future work should seek to explore the utility of dynamical model guidance 

across climate timescales relative to background climate states, such as the three modes explored here at 

subseasonal periods, or ENSO and trend for the seasonal timeframe.  

Acknowledgements.  This project was funded by the NOAA/CPO MAPP program.  We appreciate the 
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