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1.  Introduction 

 Droughts are one of the world’s most widespread climatic disasters having significant adverse impacts on 
every water-dependent sector and the economy. There is now higher confidence that extreme drought risk has 
been changing across the globe and will increase in the future with climate change. However, global extreme 
drought characteristics and their connections to regional as well as large scale climate have not been fully 
explored. In this study, considering extreme drought magnitudes and timing in every land region of the globe 
over the past several decades, we try to address the following research questions:  1- How have the annual 
extreme drought magnitudes changed across the globe?  2- What is the spatial distribution of extreme 
droughts in each continent?  3- Are there any joint dependencies between extreme droughts across the globe? 
Our preliminary analyses suggest that many parts of the world have experienced similar patterns in terms of 
extreme droughts.  

2.  Methodology and data 

We implemented Palmer Drought Severity Index (PDSI) dataset from 1950 to 2014, as a popular drought 
indicator to diagnose its extreme characteristics. This index not only integrates precipitation and temperature 
but is also highly correlated with soil moisture content (Dai et al. 2004). PDSI has been successfully applied 
to quantify the severity of droughts across different climates (Wells et al. 2004). It ranges from about -10 (dry) 
to +10 (wet) with values below -3 representing severe to extreme drought. Gridded monthly self-calibrated 
PDSI, at 2.5-degree resolution, provided by NOAA/OAR/ESRL Physical Sciences Division (PSD) 
(http://www.esrl.noaa.gov/psd/), Boulder, Colorado, is used here. 

Extracting relevant information hidden in the complex spatial–temporal drought data set is complicated. 
To identify spatial patterns, most famous statistical methods are based on the concept of intra- and intercluster 
variances (like the k-means algorithm) (Bernard et al. 2013). In terms of drought, clustering of extreme 
drought has been lacking. In order to cluster the extreme drought, we used PAM Algorithm along with F-
madogram (Bernard et al. 2013). F-madogram measures the pairwise dependence between variable time 
series and can be used as distance matrix in the PAM clustering algorithm. The approach we used here, 
combines the PAM algorithm with the F-madogram and creates a simple clustering algorithm for maxima. 
This method generates clusters around the representative grid cells (medoids). In order to use this approach, 
we consider the minimum annual PDSI of each grid cell. 

3.  Results 

Figure 1 (a) shows the significant trend of monthly PDSI data from 1950 to 2014. The slopes were 
computed based on the seasonal Kendall Trend Test considering the Serial Dependence. Approximately, 
longitudinally and latitudinally, we see that grids with negative slope outnumber the positive ones, which 
means in general, drought has become more severe during the last several decades.  The African continent, 
eastern China, eastern Australia, western Canada, parts of Russia and Brazil have experienced more severe 
droughts.   The US, western part of Australia and west of China, got generally less severe.   Dipole patterns in 
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Australia and China are remarkable.  One of the important features of this graph is that Africa has experienced 
more severe droughts through time during the last several decades. Using these maps, we will see that many 
of the continental clusters are categorized in the same location based on these trends. The slope distribution of 

Fig. 1  (a) Trends (Sen’s Slope) of Monthly PDSI from 1950 to 2014  (95% significance),  and (b) slope 
distribution of monthly PDSI from 1950-2014 in four regions of the globe. 
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monthly and minimum annual PDSI in both latitude and longitude directions are shown in Figure 1 (b). It 
shows the slope distribution acquired from the previous step in 4 regions of the world. In general, the number 
of grids with negative slope outnumbers the positive ones.  

Figure 2 represents the result of clustering for 6 continents. The number of clusters was defined based on 
the Silhouette Coefficient (SC) (Rousseeuw 1987). The medoids -that are the representative of each cluster- 
are shown by a pink diamond in each cluster and the PDSI trend of each cluster is shown under each 
continent’s map. The trends of medoids are highlighted by a thick black color.  In North America, the best 
number of clusters was found as 5.  Clusters 2, 4 and 5 cover US and Mexico.  Based on the trends of the 
medoids, it is clear that they are a good representative of each cluster. Interestingly South America is divided 

Fig. 2  The clusters of the annual extreme droughts over a) North America, b) Africa, c) South America, d) 
Asia, e) Oceania, and f) Europe from 1950 to 2014. In each map, medoids are shown by pink diamonds. 
The graphs depict the time series of PDSI for each cluster. The time series of the medoids are 
highlighted. 
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into just two clusters in north and south and Europe and Africa are divided into 3 and 4 clusters respectively.  
In Asia, we found 6 clusters. Among all the continents, Asia contains the noisiest clusters, especially in the 
south (for example see the Cluster 3). This issue has been reflected in the time series of the medoids too. 
Based on Koppen climate classifications, there are many types of climatic regions in Asia and this might be 
one of the explanations of these noisy clusters. Unlike Asia, Oceania is very well classified. Australia is 
covered with 4 clusters; however, the cluster number 6 is a little noisy. New Zeeland and South Eastern Asian 
countries are all in one cluster.  

Figure 3 presents the Spearman correlation between the medoids of all the clusters. The significant 
correlations are highlighted. The largest positive correlation belongs to cluster 3 of Asia and cluster 1 of 
Africa (0.58) and the largest negative correlation can be seen between cluster 3 of Oceania and cluster 6 of 
Asia (-0.5).  In addition to these intercontinental correlations, there are significant correlations between 
clusters of each continent. For example, clusters 1 and 2 in Africa positively and clusters 1 and 3 in Europe 
negatively are correlated. The next step of this study will be examining the association between these clusters 
and climatic patterns such as sea surface temperature (SST). It should be noted that many problems are 
associated with some degrees of uncertainty, in these situations, the decision maker tries to find a solution that 
performs relatively well across uncertainties (Najafi et al. 2018; Afshar and Najafi 2014; Najafi and Afshar 
2013; Armal et al. 2018). In the future, we will recognize and consider the uncertainties associated with the 
clustering as well as uncertainties between clusters and explanatory factors such as SST. 
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