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1.  Introduction 

It is well documented that CPC’s seasonal temperature forecast skill derives largely from long-term 
warming trends over the United States (e.g. Peng et al. 2012). Most recently this was explored in a 
presentation at the 41st Climate Diagnostics and Prediction Workshop (Baxter 2017), wherein it was shown 
that CPC’s deterministic seasonal forecast skill from 1995 to the present is not as good as a categorically 
warm forecast (a forecast where every grid cell is depicted as favoring temperatures in the upper tercile). 
Given this research result, it is imperative that CPC incorporate long-term trends as rigorously as possible and 
in a way that isolates long-term climatic changes from interannual and decadal variability. Indeed, analysis of 
climate variability on subseasonal to seasonal time scales is where CPC is uniquely adept.  

Forecasting seasonal and 
subseasonal variability explicitly is 
where known skill is unclear. For 
example, the long-term Heidke skill 
score when above-normal is the 
favored forecast temperature category 
is near +30. However, the same skill 
score when below-normal is forecast 
falls all the way to +5. This, along with 
inspection of reliability diagrams, 
reveals a systemic cold bias in the 
official forecasts. To be sure this is 
counterintuitive considering that CPC 
outlooks do forecast above-normal 
temperatures more than the other two 
categories. It would be ideal to separate 
interannual and even decadal 
variability from long-term trends in 
order to better understand, and 
potentially improve, forecast skill 
related to various phenomena. 

Two common forecast tools used 
to incorporate long-term trends are the 
linear trend and optimal climate 
normals (OCN). The latter is defined 
here as the running 15-year average temperature anomaly, which varies as a function of target season. OCN, 
as the name implies, generates forecast skill simply from the fact the base climatology used operationally (an 
aging 30-year fixed period) is inadequate, if one considers the point of a climatology to be providing your 
first-guess expectation at seasonal climate. The usefulness of an OCN forecast disappears if the base 
climatology is the OCN averaging period. Linear trends do not suffer from that shortcoming, but do suffer 
from the fact that variability other than long-term trends can easily be aliased into it, a characteristic shared by 
OCN as well. An alternative technique is introduced here, where the leading principal component of spatio-

Fig. 1  Top: Correlations of the 1st PC with ERSSTv4 data from 
1950-2015. Contour interval is 0.1 with the zero contour 
omitted. Bottom: 1st PC is plotted from 1950-2015. A clear 
positive trend is notable. 
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temporal seasonal SST variability 
during the 20th century is used as the 
trend time series. This approach 
grounds the treatment of long-term 
trends in an important physical field 
within the context of other interannual 
and decadal variability. 

2.  Methods 

Linear trends, OCN, and 
regressions of the 1st PC of SST 
variability are used in reconstruction of 
seasonal temperature anomalies from 
1965-2015. Temperature data is from 
the GHCN+CAMS dataset. The trend 
principal component is derived using 
rotated, extended EOF analysis of 
three-month, non-overlapping seasonal 
SST anomalies (Hadley SST data) 
from 1900-2015, following Guan and 
Nigam (2008). The domain of the 
analysis is 20oS-90oN, 0-360o. The 
nonstationary trend is the leading 
principal component, explaining 15.2% 
of the variance. North Atlantic decadal 
variability emerges as the 5th principal 
component; this plays some role in the 
low-frequency component of North 
American temperature anomalies. 

Trends are calculated using least 
squares regression over the 1950-2015 
period, and are used to reconstruct the 
seasonal temperature anomalies from 
1965-2015. The PC reconstructions use 
a one year lag regression between the 
principal component and the target 
season. Regression analysis is 
performed over the 1950-2015 period, 
and anomalies are reconstructed for the 
1965-2015 period. OCN is the average 
temperature anomaly over the previous 15 years for a given meteorological season, starting in 1965.  

3.  Results 

Figure 1 shows correlations of the 1st PC with ERSSTv4 data over the 1950-2015 period, along with the 
associated time series. A clear but nonstationary trend is evident. Importantly, this trend is temporally 
independent of other canonical SST variability, including ENSO. Figure 2 is the same except for the 5th PC 
comprising Atlantic decadal variability, usually identified as the Atlantic Multidecadal Oscillation (AMO). 
While only the most recent 65 years are plotted in the time series, the decadal tendency is obvious. 

For the sake of brevity, only meteorological winter is discussed here, though the analysis is complete for 
all four meteorological seasons with essentially the same results. Figure 3 shows the anomaly correlation 
between the OCN forecast anomalies and the observed anomalies over the 1965-2015 period. Positive 

Fig. 2  Same as Fig. 1, but for the 5th PC comprising decadal 
variability associated with the AMO. 

Fig. 3 Correlations between the OCN-based temperature 
reconstructions and observed temperature anomalies from 
1965-2015 for northern winter. Contour/shading interval is 0.1 
with the zero contour omitted. 
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correlations exist across northern 
North America including parts of the 
northern CONUS, while correlations 
are weak over much of the central and 
eastern CONUS. Anomaly correlations 
are notably high over much of 
Southwest, where temperature trends 
are known to be prominent. Figure 4 
shows the same but for the linear trend 
reconstructions. Importantly, this is a 
largely data dependent reconstruction, 
so this should not be taken as forecast 
skill. The spatial structure is nearly 
identical to OCN, though the 
magnitude of the correlations is 
generally higher. The SST PC 
reconstruction (Fig. 5) contains nearly 
identical spatial structure as well, with 
magnitudes that are fairly close to 
those associated with the linear trend. 
Figures 6 and 7 show the difference in 
anomaly correlations between the 
analysis using the SST PC and OCN 
and linear trends, respectively. Here it 
is clear that the SST PC is better than 
the OCN reconstruction, but somewhat 
worse than the linear trend. The 
addition of the 5th PC (AMO) to the 
regression and reconstruction analysis 
eliminates all or most of that gap (Fig. 
8).  

Because of the similarity between 
long-term trends and the 1st PC in time, 
their similar correlation footprints are 
unsurprising. However, the SST-rooted 
analysis has the advantage of being 
able to discriminate between long-term 
trends and decadal variability, and 
does not risk any obvious ENSO 
aliasing. OCN by its nature does not 
actually yield predictive information 
about a nonstationary climate. This 
becomes obvious when one considers 
that the next year ought to be warmer 
than the previous 15 years when only 
considering secular climate warming.  

4.  Conclusions 

A time series corresponding to long-term trends is desirable especially when it is derived in the context of 
interannual and decadal variability. The use of SST in this regard is preferred given its usefulness as a slowly-
varying boundary condition in seasonal climate prediction. Other physical fields could be explored in similar 
analyses, but the SST-rooted analysis is well-documented and physically robust. 

Fig. 4  Same as Fig. 3, but for reconstructions using the linear trend. 

Fig. 5  Same as Fig. 3, but for reconstructions using the 1st PC of 
spatio-temporal SST variability. 

 Fig. 6  The difference between Fig. 5 and Fig. 3. Contour/shading 
interval is 0.05 with the zero contour omitted. 
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Linear removal of the 1st PC from 
statistical and dynamical forecast 
guidance can isolate interannual and 
decadal variability from long-term 
trends. In this way we can better 
attribute both observed and forecast 
climate anomalies. In light of this 
pilot analysis, next steps include an 
independent hindcast experiment and 
the extension to overlapping 3-month 
seasons. From that point forecasts of 
trend-based anomalies and associated 
probabilities can be made and used in 
the seasonal forecast process. 
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Fig. 7  The difference between Fig. 5 and Fig. 4.  Contour/shading 
interval is 0.05 with the zero contour omitted. 

Fig. 8  The difference between a reconstruction using the 1st and 5th 
PCs and Fig. 4.  This shows the potential added benefit of 
including decadal variability. 


