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1.  Introduction 

 NOAA’s operational seasonal outlooks rely upon forecasts from the North American Multi-Model 
Ensemble (NMME; Kirtman et al. 2014).  While the NMME remains a state-of-the-art tool for seasonal 
forecasting, recent research suggests that the NMME does not consistently reproduce the observed 
relationship between the El Nino/Southern Oscillation (ENSO) and temperature over North America (Chen et 
al. 2017).  As an example, Fig. 1 shows the 1-month lead forecast December–January (DJF) ENSO-
temperature teleconnection pattern from the NMME (1b–i) compared to the observed pattern (1a).  Several of 
the NMME member models fail to represent the observed teleconnection pattern over the NMME hindcast 
period (1982–2010).  For example, the CMC2, GFDL, GFDL-FLOR, and NASA models suggest a negative 
correlation (-0.6 < r < -0.2) between ENSO and temperature over portions of the Midwestern United States 
where the observed correlation is positive (0.2 < r < 0.6).  

Given the short duration of the 
NMME hindcast period and the observed 
variability in both ENSO events and 
remote responses to ENSO events during 
this period, it is difficult to evaluate the 
skill of model teleconnection patterns.  
Regardless, recent results support the 
notion that such discrepancies contribute 
to reduced forecast skill (Chen et al. 2017).  
Prior work has applied Bayesian post-
processing to general circulation model 
(GCM) output to both calibrate GCM 
forecasts and correct for model 
misrepresentation of relevant 
teleconnections (Schepen et al. 2014, 
2016).  Here we test this Bayesian post-
processing method – known as Calibration, 
Bridging, and Merging (CBaM) – using 
the NMME hindcast dataset with the 
ultimate goal of improving forecast skill 
over regions where the NMME 
misrepresents the ENSO teleconnection. 

2. Data and methods 

The CBaM method for post-processing dynamical model forecasts employs Bayesian joint probability 
(BJP)  modeling  (Wang et al. 2009).  Using  NMME  reforecasts  and  observed  SST, 2-m  temperature,  and 

Fig. 1  Correlation between DJF Nino3.4 SST anomalies and 2-
m temperature over North America for the NMME hindcast 
period 1982-2010,  a) observation, b)-h) 1-month lead 
forecast by ensemble members, and i) by NMME. 
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precipitation data from the Optimum Interpolation SST (OISST), Global Historical Climatology Network+ 
Climate Anomaly Monitoring System (GHCN+CAMS), and Climate Prediction Center Merged Analysis of 
Precipitation (CMAP) datasets, respectively, we develop two types of Bayesian joint probability models: one 
to model the relationship between NMME-reforecast temperature (precipitation) and observed temperature 
(precipitation) at each grid point, and another to model the relationship between NMME-reforecast Niño3.4 
anomalies and observed temperature or precipitation at each grid point.  We refer to the former as a 
calibration model and the latter as a bridging model.  Bivariate normal distributions are at the core of a 
Bayesian joint probability model.  Prior to Bayesian joint probability model development, data 
transformations are applied to the temperature and precipitation data to ensure that they conform to a bivariate 
normal distribution.  Markov Chain Monte Carlo sampling is employed to obtain a numerical sample of the 
posterior distribution of the bivariate normal parameters (mean and covariance).  For each calibration 
(bridging) model, we sample 1000 bivariate normal parameters from which we derive an ensemble of 1000 
calibrated (bridged) forecasts. 

Fig. 2  Brier skill scores from fully merged CBaM post-proccessed NMME probabilistic forecasts of below 
normal temperature (2a–d) and precipitation (2e–h) over the NMME hindcast period. 

Fig. 3  Difference maps depicting the difference between bridged and calibrated Brier skill scores for 
probabilistic forecasts of below normal temperature (3a–d) and precipitation (3e–h) over the NMME 
hindcast period.  Warm shading represents areas for which bridging yielded higher Brier skill scores than 
calibration. 
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We develop separate bridging and calibration models for each NMME member model of grid point, initial 
time, and lead; and apply leave-one-year-out cross validation to test the method over the hindcast period.  The 
final step in the CBaM method is to merge the bridged and calibrated forecasts using Bayesian model 
averaging.  The resulting merged forecast represents the weighted mean of the calibrated and bridged 
forecasts. 

Finally, we assess probabilistic forecast skill using Brier skill scores and reliability diagrams.  For brevity, 
we only present results for probabilistic forecasts of below normal temperature and precipitation. 

3.  Results 

As expected, we find that the fully merged temperature forecasts yield higher Brier skill scores than the 
fully merged precipitation forecasts (Fig. 2).  We additionally find that the calibrated forecasts on average 
perform better than the bridged forecasts, particularly for temperature (Fig. 3).  However, bridging improves 
DJF temperature forecasts for some regions and seasons.  In particular, bridging marginally increases skill 
over parts of the Midwestern and Northern United States – approximately the same regions where the NMME 
misrepresents the ENSO-temperature teleconnection pattern. 

We apply a bootstrap significance test to determine whether bridging significantly enhances 1-month lead 
forecast skill of DJF 2-m temperature beyond what skill is achieved through calibration (Fig. 4).   Bridging 
statistically significantly (α= 5%) improves 1-month lead forecast skill over calibration for approximately 10% 
of North American CMC2 and NASA grids.  The degree to which bridging enhances skill varies by NMME 
member model, season, and lead (not shown).  Improvement from bridging is largely confined to winter 
months, although we find that bridging significantly enhances forecast skill for a small subset (~5%) of grids 
for CMC1 forecasts of JJA temperature.  Overall, these results suggest that bridging is likely a more useful 
tool for post-processing individual model ensembles rather than multi-model ensembles.  Bridging improves 
forecast skill relative to calibration for fewer than 3% of NMME grids over the hindcast period.  Finally, we 
find that the fully merged CBaM forecasts are more statistically reliable than the raw NMME forecasts (Fig. 
5), particularly for higher predicted probabilities.  Both calibration and bridging yield statistically reliable 
forecasts, although calibration tends to achieve better reliability in the higher predicted probability bins (not 
shown). 

Fig. 4  Shading indicates Brier skill scores associated with 1-month lead merged CBaM forecasts of below 
normal DJF 2-m temperature for each of the NMME member models and the multi-model mean.  
Hatching denotes grid cells for which bridging statistically significantly improves forecast skill, where 
statistical significance is determined using a bootstrap method. 
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While these results suggest that 
the CBaM tool may improve real-
time NMME forecast skill, some 
caveats should be noted.  As noted 
previously, we develop bridging 
models using a relatively short, 29-
year data set.  Given this, a small 
number of extreme ENSO events 
most strongly influences the 
statistical relationships.  
Additionally, we develop separate 
bridging and calibration models at 
each grid point and therefore do not 
take into account spatial 
correlations among grid points.  
Future iterations of the tool should 
account for such spatial 
autocorrelation, possibly using 
hierarchical Bayesian modeling.  
Finally, it remains to be determined 
how well BJP calibration and 
bridging models developed from 
hindcast data will perform using a 
truly statistically independent real-
time forecast.  We are currently 
testing the method to post-process 
real-time NMME seasonal forecasts 
of temperature and precipitation to 
determine its utility as an 
operational forecast tool.  The 
experimental probabilistic real-time 
CBaM forecasts can be found at http://www.cpc.ncep.noaa.gov/products/people/dcollins/cbam/. 
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Fig. 5  Reliability diagrams comparing the statistical reliability of 1-
month lead raw (black) versus CBaM (orange) forecasts of 2-m 
temperature. The CBaM results refer to the fully merged multi-
model (NMME) forecast.  The raw forecast refers to the multi-
model mean forecast, without any bias-correction applied.  The 
horizontal axis denotes the predicted probability while the vertical 
axis denotes the observed relative frequency.  The light gray 
dashed line corresponds to a perfectly reliable forecast.  The size of 
the plotted circles is proportional to the number of forecast 
probabilities that fall into a given predicted probability bin. 




