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NOAA's operational climate monitoring and prediction products provide the public with critical information about environmental conditions for better preparedness and improved resiliency. NOAA's Modeling, Analysis,
Predictions and Projections - Climate Test Bed (MAPP-CTB) projects support transition of research advances from external community to National Centers for Environmental Prediction (NCEP) to accelerate the
Improvement of operational climate monitoring and predictions. Three focus areas are 1) testing the performance of model components and schemes of methodologies, 2) testing experimental prediction methodologies and
products, and 3) testing a multi-model subseasonal climate prediction system via model selection, system optimization and products evaluation. By tracking progresses on twenty-three MAPP-CTB projects, this
presentation highlights major achievements to date and assesses the Transition Readiness Level (TRL) by measurements of benchmarks and deliverables following NOAA Administrative Order (NAO).
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1) Model components critical to S2S prediction, 2) Representation of predictability sources,
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1) Optimization of model design, 2) Robust MME forecast system
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model forecast spatial patterns were corrected,
resulting in skill improvements in specific regions
and seasons. Overall improvements are quite
limited, however. On the other hand,
improvements at a local (not pattern) level are
substantial for both precipitation and temperature.
The CCA was therefore found to be useful for an
unintended purpose, as local corrections can be
done using simpler methods than CCA. Another
unexpected finding was that applying the CCA to
the entire globe as a single region produced equal
or better results than applying it to individual
regions and merging the corrected forecasts into a
global forecast. The figure shows geographic
distribution of root mean squared error skill score
(RMSESS) over the globe as a single region, for
temperature forecasts by the NCEP-CFSv2 model
for January-March made in early December. The
top panel shows the original skill, and the bottom
panel the skill following the CCA correction. The
RMSESS is in terms of standardized anomalies
with respect to the observed mean and standard

T  deviation. (PI: A. Barnston)
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20 A website has been created to provide

public information about the Subseasonal
Experiment (SubX) project, datasets, models,
and research activities.

(http://cola.gmu.edu/kpegion/subx/)

Each modeling group is producing re-forecasts
following the SubX protocol. The re-forecasts are
being made available to the research community
on the IRl data server. The IRI continues to
update the NMME monthly archive in the IRI
Data Library in real time every month as new
output files are made available by the
contributing forecast centers. It also assists

users of the NMME archive who send requests
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for help in accessing the data.
(PI: B. Kirtman)
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