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1.  Introduction 

During the recent years, efforts have been made to investigate the time-varying trends in extreme events as 
one of the relevant aspects of climate change across different scales (Asadieh and Krakauer 2015; Armal et al. 
2016; Armal et al. 2018a; Najafi et al. 2019a; Armal and Al-Suhili, 2019).  Yet, there is a little understanding 
on space-varying trend of extreme rainfall events. For understanding the impact of anthropogenic forcing on 
occurrence of extremes, researchers (Sillmann et al. 2017; Vautard et al. 2016; Yiou et al. 2017) often separate 
the indirect effect on changing circulation pattern (also called dynamical process) from thermo-dynamic 
pathway. The dynamic process is more specific to local scale (Pfahl et al. 2017) and is frequently associated 
with regional anomalous weather pattern. However, it is fairly small compared with the uncertainty that 
introduced by internal climate variability (Deser et al. 2014).  Therefore, it is more fruitful to investigate the 
modes of internal variability, peculiarly characterized by anomalous sea surface temperature and barometric 
pressure pattern especially quasi-periodically oscillations indices e.g. El Niño/Southern Oscillation (ENSO), 
the Pacific Decadal Oscillation (PDO), the North Atlantic Oscillation (NAO) and other so-called modes of 
variability (Hartmann et al. 2013; Trenberth et al. 2015; Najafi et al. 2018a; Najafi et al. 2018b; Najafi et al. 
2018c;  Armal et al. 2018b; Najafi et al. 2019b).  This study extracts and validates an index to study the space-
varying trends in simultaneous extreme precipitation events. It correlates the frequency of simultaneous 
extremes with Global Surface Anomaly Temperature (GST) as a proxy of thermodynamic pathway, and a 
number of climate variability modes (ENSO, NAO, PDO and AMO), as a proxy of internal climate variability.  

2.  Methodology 

In a few examples of applying spatial indices, researchers either look at the grids with highest and lowest 
30% of the values, associated with the number of wet and dry grids, in each year of global data (Donat et al. 
2016) or rely on the high percentile index of daily data over limited spatial extent (Fischer and Knutti 2015). 
The global ratio of daily extremes (GRDE) is designed to aggregate in-situ extremes over space. For each day 
of data, we consider the total number of stations with rainfall events exceeding a threshold of 99% of the full 
period. The product data is a time-series of daily total number of stations which are showing a value above 99% 
threshold. To minimize the effect of data scarcity in our analysis, the number of stations with extreme events is 
divided by the number of stations with available data: 
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where d is the day index, i is the numerator index for stations with available data, 𝑃𝑃𝑖𝑖𝑖𝑖
𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ daily rainfall of 

station i in a year, and 𝑃𝑃𝑖𝑖∗ is the rainfall exceeding threshold for that station.  NS is the total number of stations 
with available data in the day d.  δ is the binary indicator function. 

At first, we implement GRDE aggregation over different continents to extract the top 20 days with higher 
values. These dates are applied to daily composites of perceptible water content (PWC) anomalies (mean - total 
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mean) to perceive whether there is any distinctive circulation pattern over the region (note that the historical 
climate data starts from 1948, hence the selected dates for composite maps are limited to this period). Moreover, 
these patterns are compared to the global spatial distribution of stations that experience at least one extreme in 
the top 20 dates.  The extent of anomalous PWC yields information about the occurrence of extremes in rest of 
the world. 

Also, we apply Generalized Extreme Value (GEV) fit distribution on yearly maximum GRDE and inform 
the location parameters with GST as an indicator for thermodynamic pathway and ENSO, NAO, PDO and 
AMO as an indicator for dynamical process. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦,𝑚𝑚𝑚𝑚𝑚𝑚  ~ 𝐺𝐺𝐺𝐺𝐺𝐺�𝜇𝜇𝑦𝑦 � 𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑃𝑃𝑃𝑃𝑃𝑃 + 𝐴𝐴𝐴𝐴𝐴𝐴,𝜎𝜎, 𝜀𝜀) 
Here 𝜇𝜇𝑦𝑦 is the location parameter, 𝜎𝜎 is the scale parameter and 𝜀𝜀 is the shape parameter. For every continent as 
well as Northern/Southern hemisphere, we randomly chose 100 blocks with 60-yr size of data, and performed 
the GEV fit distribution. Furthermore, we exclude the all the estimations which are outside the 95 confidence 
interval.  

3.  Results 

We present the results of our analysis for three continents: North America, Europe and Australia. Figure 2 
indicates the location of global stations that shows at least one day of extreme precipitation in the top 20 GRDE. 
Fig. 2-a is based on the top 20 days with highest percentage of simultaneous extreme events in North America, 
Fig. 2-b is based on Europe and Fig. 3-c is based on Australia. 

The PWC composite maps identify the anomaly of total water content in the selected days. Unlike Europe, 
both North America and Australia confirm the occurrence of wide spread extreme rainfall with positive anomaly 
values of PWC.  Notably, in the top 20 GRDE of North America many stations flags with extreme rainfall in 
Australia. Reciprocally, the same feature is observed in North-west America, in the top 20 GRDE days of 
Australia. Another possible linkage is evident in the top 20 GRDE of Europe, when many stations in North 
America are identified with an extreme rainfall. The PWC maps suggest spread of spatial anomalous field across 

Fig. 1  We looked at more than 100,000 GHCN (Global Historical Climatology Network - daily database 
https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/) stations across the globe and extracted the total daily 
precipitation from those that have data from 1900 - 2016 (117 years). From this data, we selected high-quality 
stations using the following procedure. First, for each year, if more than 40% of days is missing data, we flag 
this as a missing year.  Next, only stations that have at least 70 years of complete data are selected. This 
process yielded 6185 stations across the globe. 
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the globe, with no significant impact over Europe. The number of extremes is concentrated over relatively small 
area and induced by few number of stations.  

Figure 3 shows the values obtained for location parameters for different continents. This values are obtained 
from 100 bootstrapping block over GEV analysis. None of the results suggest the impact of high to medium 
frequency modes of climate variability on the occurrence of simultaneous extreme rainfall. In Europe/Australia, 
there is a strong positive/negative correlation between trend in GRDE and global surface temperature anomaly.  
The response of North America to GST highly varies but the median is close to zero. Moreover, in North 
America/Australia, positive/negative AMO links to frequency of the simultaneous extreme events. The linkage 
of AMO variation with strength of Thermohaline Circulation (THM) (García‐García and Ummenhofer 2015) 
can regulate the climate across the globe and impact the occurrence of global extremes. 
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