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1.  Introduction 

The current seasonal forecast process at NOAA’s Climate Prediction Center (CPC) dates back to 1995, and 
involves issuing temperature and precipitation forecasts for the upcoming 13 three-month overlapping seasons. 
Statistical and dynamical models are both used to inform the forecast process, with an objective consolidation 
introduced in 2006 (O’Lenic et al., 2008). Beginning in 2011, forecasts from the National Multi-Model 
Ensemble (NMME) have been available to forecasters and used heavily in constructing official outlooks. A 
looming issue for seasonal forecasts, especially temperature, is the role of long-term trends – much of the skill 
of seasonal temperature forecasts can be attributed to the fact that above-normal temperatures are observed 
more in real time than over the reference climatology (currently 1981-2010).The first section will detail some 
recent developments in seasonal forecasting using empirical forecast techniques, as well as post-processing of 
dynamical guidance and subsequent consolidation across suites of forecast guidance.  The second section will 
discuss research results related to a project that explores how to better handle long-term trends in seasonal 
forecasts.    

2.  Developments in the seasonal forecast process 

Beginning in 2016 there have been multiple efforts to update the legacy empirical tools suite that forms the 
basis of the seasonal forecasts. Post-processing and calibration of dynamical model data from the NMME has 
been prioritized, and most recently a new 
consolidation of the statistical and dynamical 
forecast tools has been developed and made 
available to forecasters in real time.  

Since 2017, three new empirical forecast 
tools have been derived and used in the forecast 
process: 

• ENSO-OCN: This empirical model 
uses the official CPC Niño 3.4 
consolidation forecast as a predictor in 
a linear regression model. The 15-year 
optimal climate normal (OCN; running 
15-year mean anomaly relative to 
reference climatology) is removed 
prior to regression and then added back 
in the end. The process uses a leave-
one-year-out cross validation to 
generate skill metrics and calibrate the 
forecast anomalies using linear 
regression. Probabilistic temperature 
and precipitation (precipitation data are 
subject to a square root correction) 

Fig. 1  Reliability diagram of lead-1 temperature forecasts valid 
for DJF from the NMME and final consolidation forecast 
over North America from 1981-2018. The blue line shows 
the reliability of the mean of individually PAC-calibrated 
NMME models, while the red line shows the reliability 
after the second pass PAC calibration. The final 
consolidation and perfect reliability are in green and purple, 
respectively. 
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forecasts are created by using the 
model’s residual error to fit a single 
Gaussian distribution around the 
forecast anomaly.  

• CCA: The current operational 
canonical correlation analysis (CCA) 
used for Niño 3.4 prediction is 
extended to temperature and 
precipitation by changing the 
predictands. This forecast system 
currently uses sea surface temperature 
(SST) and sea level pressure anomalies 
as predictors. A forward-moving 
hindcast from 1995 onward is used to 
calculate skill and calibrate using 
regression. Probability forecasts are 
likewise calculated by using the 
unexplained variance from the 
regression calibration process. 

• SST Constructed Analog: A long-time 
favorite of CPC forecasters, this 
product has been reinvigorated by 
using its cross-validated hindcast to 
generate probabilistic forecasts. 

The NMME dynamical model suite is 
currently calibrated using probability anomaly 
correlation (PAC; van den Dool et al. 2017). In 
real time this process works by calibrating each 
model and then averaging across models using 
equal weights; this can lead to under-confident 
forecasts (Fig. 1). This issue can be understood 
intuitively by considering two models – one that is skillful and one that is not skillful. The probabilities from 
the model with no skill are damped to climatology in the PAC calibration process; however, some portion of 
the probability anomalies from the skillful model is retained.  In this case the forecaster would not want to 
consider the skill-less model, however it has the effect of further damping the skillful model when included in 
the final, averaged product. To address this as part of the new consolidation process, the NMME constituent 
model forecasts are combined by weighting according to their PAC coefficients as a function of grid point. This 
combination is then subject to a second pass PAC calibration, thus eliminating the under-confidence. The 
statistical models are likewise combined into a statistical model constituent. The NMME and statistical 
combinations are then consolidated by weighting based on PAC coefficient and calibrating over the entire 
hindcast – this yields the final consolidation that can serve as a first guess for the official forecast. This process 
continues to update in real time, so model biases and the PAC coefficients are based on the maximum amount 
of available data.  
3.  Ongoing challenges – Long-term trends 

An ongoing challenge in seasonal climate forecasting is how to optimally handle long-term trends. We 
know, for instance, that CPC’s seasonal temperature forecast skill is largely due to observed long-term warming 
trends (e.g. Peng et al., 2012). At first glance this might seem to indicate that beyond the linear trend there is 
little seasonal forecast skill. However, the apparent skill in predicting interannual and even decadal variability 
can be muted by the dominance of long-term trends in forecasts and observations. Therefore separating secular 
warming from decadal and interannual climate variability is potentially important for short-term climate 

Fig. 2  Loading patterns for the non-stationary trend (PC2, top 
panel) and AMV (PC6, middle panel) shown as correlations 
between the PCs and SST anomalies from 1900-2017. The 
bottom panel shows the PC times series over the 1900-2017 
period. 
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prediction. Furthermore, 
distinguishing between climate 
variability as a function of time 
scale can provide an on-the-fly 
attribution of forecast and 
observed seasonal climate 
anomalies.   

Historically CPC has 
incorporated trends through the 
OCN tool, which takes advantage 
of the fact that the fixed 30-year 
WMO climatology is not likely the 
ideal ‘first guess’ for seasonal 
temperature and precipitation. One 
can test for the ideal number of 
preceding years, which will 
varying seasonally and spatially, 
but a fixed 15-year OCN is a 
simple and reasonable method 
currently used.  

An ongoing research project 
has attempted to deal with the issue 
of trends by decomposing seasonal 
SST data following Guan and 
Nigam (2008). A rotated, extended 
EOF analysis of 20th century SST 
anomalies yields principal 
components (PCs) that correspond 
to variability ranging from ENSO to the secular trend. Preliminary results showed that using the trend PC or a 
linear trend line was better than the OCN-15 at reconstructing seasonal temperature anomalies. Adding a PC 
corresponding to Atlantic multidecadal variability (AMV) closed the gap between the linear trend line and the 
SST PC comprising the secular trend. The overarching idea is that it would be desirable to have a small subset 
of physically-grounded time series (e.g. derived from SST) through which one might attribute climate anomalies 
to variability on decadal time scales or longer.  

These preliminary results, however, were data dependent reconstructions, and so an experiment was devised 
that would test these PCs in a predictive capacity. Starting in 1980, the extended, rotated EOF analysis is 
computed for 1900-1980 using ERSSTv5, and various PCs are used as predictors. Temperature and 
precipitation data (GHCN+CAMS and CPC’s gauge-based reconstruction, respectively) from 1950-1980 is 
used in a linear regression model to generate a forecast for seasons in 1981, using no future data. This process 
is repeated for each year from 1981 to 2017 resulting in a forward moving hindcast.  Figure 2 shows the loading 
patterns associated with the long-term trend and AMV and their PC time series. Hindcast skill is calculated 
using anomaly correlation coefficients, and results are compared to the skill of an OCN-15 forecast. This 
process is repeated using a fixed climatology (anomalies relative to fixed mean and zeroed out in correlation 
calculation), a trailing 30-year WMO climatology (i.e. using 1951-1980 climatology from 1981-1990), and a 
trailing 15-year climatology (zeroing out OCN).  

To emphasize the empirical model skill relative to OCN, Figures 3 and 4 show the skill of three 
reconstructions (trend alone, AMV along, and the leading 10 PCs) relative to a trailing 15-year climatology, for 
each of the four meteorological seasons. The AMV component seems to yield skillful temperature forecasts 
relative to OCN over the Plains during JJA and over much of southern Canada during SON. The Trend PC 
provides little value relative to OCN in this framework with marginal and mixed temperature results. The role 

Fig. 3  Anomaly correlation between the temperature hindcast and 
observations where anomalies are with respect to a trailing 15-year 
climatology. Left (right) column is for lead-3 DJF (MAM) forecasts. 
From top to bottom rows: forecast using trend PC as predictor, forecast 
using AMV PC as predictor, forecast using the leading 10 PCs as 
predictors. 
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of ENSO can be seen in the skill of 
temperature forecasts using the 10 
leading PCs (ENSO variability is 
contained in three to four of the 
leading patterns), especially during 
the transition seasons. The results 
with respect to precipitation are 
difficult to interpret (not shown). 
The skill with respect to a trailing 
15-year climatology is surprisingly 
high, but this might point to the 
relative futility of OCN-based 
precipitation forecasts, at least as 
compared to temperature forecasts. 
Precipitation climatologies are 
more stationary than temperature, 
and these results may suggest that 
longer climate base periods are 
more appropriate for precipitation 
forecasts.  

Overall the results of the 
forward-moving hindcast 
experiment are mixed – OCN 
proves difficult to beat on 
independent data for temperature forecasts, but OCN may be ill-advised for precipitation forecasts. Some ideas 
for future directions include using a Hadley-OI blended dataset from 1900-present, which would be more akin 
to the Guan and Nigam (2008) method. Because ERSST uses recent data in its reconstruction of past data, it 
may not be as well suited to analyses targeting variability on decadal or longer time scales. The forward-moving 
approach is intentionally restrictive, but even outside of a prediction framework this analysis can be useful for 
monitoring and attribution of SST anomalies and associated climate impacts. 
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Fig. 4  Same as Fig. 3, except for JJA (left column) and SON (right column). 
 


