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1.  Introduction 

The public demand for sub-seasonal forecasts have been steadily increasing in recent years, primarily driven 
by many industries, such as water management, agriculture, transportation, commerce and insurance etc., to 
prepare for and reduce risk from damaging meteorological events well in advance. Numerical forecasts on the 
Week 3-4 time scale are relatively new and to be one of the most challenging and difficult forecast time scales. 
Past forecast efforts have been focused on the short term weather forecasts out to 7-10 days and operational 
short term climate outlooks from month to several seasons. There is a clear forecast gap between the Week 3 
and 4. 

In 2016, the National Oceanic and Atmospheric Administration (NOAA) initiated the efforts to improve its 
capability for the Weeks 3 and 4 extended range forecasts. Covering this extended-range Week 3~4 forecasts 
will enable NOAA to provide seamless S2S forecasts to the public for protecting life and property. So far, the 
Week 3 ~4 forecast skills from direct dynamical forecast models are much lower than the short range forecasts, 
such as 1~7 days and the Week 1~2 forecasts. In this study, the deep machine learning (i.e. Neural Network – 
NN) techniques are proposed to explore, test, evaluate, and eventually implement a reliable statistical post 
processing method utilizing model derived fields to improve the original NOAA CFS Week 3-4 time range 
model precipitation (P) and 2 meter air temperature (T2m) forecasts.  
2.  Methodology and data 

Usually statistical post processing of model outputs is based on a reasonable assumption that there is a 
relationship between target variables (predictands) (e.g. observed weather and climate elements) and input 
variables (predictors) (e.g. the NWP model forecast variables).  In a very generic symbolic way, this relationship 
can be written as:  

𝑍𝑍 = 𝑀𝑀(𝑋𝑋);     𝑋𝑋 ∈ ℜ𝑛𝑛, 𝑍𝑍 ∈ ℜ𝑚𝑚       (1) 

where X is a input vector composed of model forecast variables or predictors, Z is a output vector composed of 
observed meteorological elements or predictands, n is the dimensionality of the vector X (or input space), and 
m is the dimensionality of the vector Z (or output space).  M denotes the mapping (relationship between the two 
vectors) that relates vectors X and Z.  

 Since both model forecast variables (predictors) and observations (predictands) contain errors in their data 
representations, a statistical approximation of the mapping Eq.(1) can be written as, 

𝑌𝑌 = 𝑀𝑀𝑠𝑠(𝑋𝑋)           (2) 

here vector Y can be considered as a vector of corrected model variables X and Ms isa statistical approximation 
for the mapping M in Eq (1). 

The NN techniques are very flexible and convenient mathematical/statistical tools that can allow users to 
approximate different complicated nonlinear input/output relationships/mappings, by using statistical deep 
machine learning algorithms (Krasnopolsky 2013). The simplest NN approximations use a family of analytical 
functions like: 
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𝑦𝑦𝑞𝑞 = 𝑁𝑁𝑁𝑁(𝑋𝑋,𝒂𝒂,𝒃𝒃) =  𝑎𝑎𝑞𝑞0 + ∑ 𝑎𝑎𝑞𝑞𝑞𝑞 ∙ 𝑡𝑡𝑞𝑞;𝑘𝑘
𝑞𝑞=1          𝑞𝑞 = 1,2, … ,𝑚𝑚    (3)  

where 

      𝑡𝑡𝑞𝑞   =  𝐹𝐹(𝑏𝑏𝑞𝑞0 + ∑ 𝑏𝑏𝑞𝑞𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗) = 𝑛𝑛
𝑗𝑗=1 tanh (𝑏𝑏𝑞𝑞0 + ∑ 𝑏𝑏𝑞𝑞𝑗𝑗 ∙ 𝑥𝑥𝑗𝑗);   𝑛𝑛

𝑗𝑗=1      (4) 

here xi and yq are components of the input and output 
vectors X and Y, respectively, a and b are NN weights, n 
and m are the numbers of inputs and outputs respectively, 
and k is the number of the nonlinear basis activation 
function  𝑡𝑡𝑞𝑞  (or hidden neurons). Here the hyperbolic 
tangent is used as an activation function. Eq. (3) is a 
mapping, which can approximate any continuous or 
almost continuous (with final discontinuities) mapping 
(Krasnopolsky 2013). A pictographic representation of 
the entire NN was shown in Fig.1 and the connections 
(arrows) correspond to the NN weights. 

To find coefficients aqj and bji in NN Eq. (3, 4), an 
error function, E, is created,  

𝐸𝐸 =  1
𝑁𝑁
∑ [𝑍𝑍𝑗𝑗 − 𝑁𝑁𝑁𝑁(𝑋𝑋𝑗𝑗)]2𝑁𝑁
𝑗𝑗=1    (5)                                                                                                                                                                                                                                               

where vector Zi  is composed of observed weather 
elements, and N is the total number of paired records 
included in the training data set.  Then, the error function 
(5) is minimized to obtain an optimal set of all coefficients aqj and bji via a simplified version of the procedure 
known as the back propagation training algorithm. The back propagation algorithm searches for minimum of 
error (or cost) function in weight space through the steepest (gradient) descent method. It partitions the final 
total cost to each of the single neuron in the network and repeatedly adjusts the weights of neurons whose cost 
is high, and back propagate the error through the entire network from output to its inputs.  

The data set used for predictors here is the bias corrected Week 3~4 forecast total precipitation (P) and  
mean 2 meter (T2m) temperature etc., and from the NOAA Climate Forecast System (CFS) (Saha et al. 2006, 
2014) for period Jan. 01, 1999 to Dec. 31, 2018. The data domain used in this study covers the Conterminous 
US (CONUS) only, has 1x1 degree spatial resolution and on daily temporal resolution initialized at 4 different 
times (00Z, 06Z, 12Z and 18Z) per day.  

The data set used for correspondent target variables (predictands) are the observed P from the gauge based 
daily CPC Unified Precipitation Analysis and the observed T2m from the Global Telecommunications System 
(GTS) based daily maximum and minimum 2 meter temperature analysis (Chen et al. 2008, Shi personal 
communication, Fan et al. 2008). Both the above observed P and T2m are converted to two weekly total and 
two weekly mean, and re-gridded to the same spatial-temporal resolutions as the above predictors. 

3.  Results 

It is well known that the forecasts for the Week 3-4 time scale is one of toughest forecast areas and the 
skills are very low in general. In this study, an open question wanted to be addressed is if the deep machine 
learning techniques used here can add additional values to improve the targeted forecasts in the Week 3-4 time 
scale, when compared with the benchmark multiple linear regression (MLR) tools and also the bias corrected 
CFS the Week 3~4 forecasts as the inputs (or predictors).   

Several tests have been conducted and the results indicate that using ensemble mean from 4 initial time 
(00Z, 06Z, 12Z and 18Z) the resultant Week 3~4 NN P and T2m forecasts in general are better than the results 
from using the CFS P and T2m forecasts on the individual initial time. In the following part of this paper, the 
main focus will be all on a more beneficial NN configuration that the entire NN training and testing at all 
locations will be done simultaneously in just one same training cycle.  

Fig.1 The simplest NN with one hidden layer and 
linear neurons in the output layer. 
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Figure 2 shows that overall the root mean square errors (RMSE) and anomaly correlation coefficients (ACC) 
of the bias corrected ensemble mean CFS P forecasts improved by the NN are better than that of the forecast 
results obtained from the benchmark multiple linear regression method for most locations. Here the NN training 
period is from 01/01/1991 to 12/31/2016 (6575 day records). The period of 01/01/2017 to 10/31/2018 (~670 
day records) is used as independent verification period. The above results indicate both the NN and the MLR 
methods improved the bias corrected CFS Week 3~4 P forecasts, especially the forecast skills in quite parts of 
the western CONUS are encouraging (ACC over 0.4 or 0.5). The NN forecasts show clearly better forecast 
skills than the MLR forecasts over most locations in term of the RMSE and ACC. It may also indicate that the 
NN corrections which take into account of the non-linearity, pattern relationship and co-variability impacts are 
important for improving P forecasts. 

Same as precipitation, Figure 3 shows that the root mean square errors (RMSE) and anomaly correlation 
coefficients (ACC) of the bias corrected ensemble mean CFS T2m forecasts by the NN are better than that of 
the forecast results obtained from both CFS and the benchmark MLR method for most locations. The above 
results indicate both the NN and the MLR methods improved the bias corrected CFS Week 3~4 T2m forecasts, 
especially the forecast skills in large parts of the southwestern CONUS and the eastern half of the CONUS are 
quite encouraging (ACC over 0.4 or 0.5). The NN forecasts show clearly better forecast skills than the MLR 

Fig.2  The RMSE and ACC of daily Week 3~4 total P by (a, d) Bias corrected CFS ensemble mean forecasts, (b, e) 
MLR forecasts, (c, f) NN forecasts, against correspondent observation for period of  Jan.1 2017 to Oct. 31, 2018. 
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forecasts over most locations in term of the RMSE and ACC. It may also represent that the impacts of the non-
linearity, pattern relationship and co-variability are also very important for the T2m correction. 

Checking the overall forecast performance of three (CFS, MLR and NN) forecasts over the 2017-2018 two 
years verification period, both the MLR and the NN constantly beat the CFS.  But the NN forecasts did much 
better job than the MLR forecasts in many aspects. Figure 4 depicts that the examples of the observed P and 
T2m anomalies, together with the correspondent Week 3-4 CFS, MLR and NN forecast anomalies. In both 
cases, the NN techniques show very impressive ability to reverse the wrong P and T2m forecast patterns. 

4.  Conclusion 

In this study, the artificial neural network (deep machine learning) techniques are used to improve the NCEP 
CFS Week 3~4 P and T2m forecasts. Benefiting from the great advance in machine learning in recent years, 
the NN techniques show some advantages over traditional statistical methods (e.g. multiple linear regressions): 
such as flexible algorithm that can account for complicated linear and non-linear relationships, spatial 
dependency and co-variability etc., at the same time is able to handle big data easily. Those learned statistical 

Fig. 3  The RMSE and ACC of daily Week 3~4 T2m by (a, d) Bias corrected CFS ensemble mean forecasts, (b,e) 
MLR forecasts, (c,f) NN-A forecasts,  against daily observation for period of Jan.1 2017 to Oct. 31, 2018. 
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patterns and relationships from the 
NN training processes then are 
used by the NN to make the 
corrected forecasts.  

Better data representation is 
very important for the NN 
training. The EOF analysis 
indicates that the CFS is very good 
at predicting large-scale patterns 
and low frequency variations in 
observed precipitation, rather than 
at capturing those highly 
parameterized and unresolved 
processes in precipitation. Better 
data representation may be 
archived by using ensemble means 
to increase the explained 
percentage of the total variance 
and to reduce noise in the data. 

Although the improvement on 
the Week 3~4 precipitation and 
T2m is very encouraging, the 
overall forecast skill (in terms of 
RMSE and ACC) for the Week 
3~4 precipitation and 2m air 
temperature predictions is still not 
great. Further studies are 
definitely needed. 
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Fig. 4  The observed (Obs), CFS, MLR and NN forecast P (top 4 plots) and 
T2m (bottom 4 plots) week 3-4 forecast anomalies.   


