Application of a Hybrid Dynamical-Statistical Model for Week 3 and 4 Forecast of Atlantic/Pacific Tropical Storm and Hurricane Activity

Jae-Kyung E. Schemm and Hui Wang
Climate Prediction Center, NCEP/NWS/NOAA
NGGPS External PI Meeting
August 3, 2016
NCWCP, College Park, MD
Project Objective

1. Develop a hybrid dynamical-statistical model for weeks 3 and 4 TS and hurricane activity forecast with the CFSv2 45-day hindcast data for 1999-2014. A hybrid prediction system for seasonal TS activity has been in operation at CPC since 2009 for the NOAA Hurricane Season Outlooks.

2. Test the hybrid model for real-time prediction for 2016 hurricane season.

3. Implement the model into operations at CPC in 2017.

4. Contribute towards CPC’s effort for developing Week 3 and 4 forecast products.
Project Accomplishments and Plan

• Year 1 Accomplishments

 1. Established a multiple regression relationship among TS activity, SST and atmospheric circulation variable indices.
 2. Developed the hybrid forecast model for weeks 3 and 4 TS activity prediction based on the CFSv2 45-day hindcast for 1999-2014, including the cross-validated evaluations.

• Year 2

 1. Real-time forecast test during the 2016 hurricane season
 2. Operational implementation at CPC for the 2017 season
Hybrid Dynamical-Statistical Prediction System

• A Multiple regression relationship established between weekly tropical storm activity over the Atlantic/Pacific basins and predicted circulation variables.

• Tested Predictors:
 Weekly wind shear (U200-U850), SST, mean sea level pressure, and two MJO indices

• Predictand:
 Weekly total number of tropical storm days

• CFSv2 Hindcast data:
 Period; 1999-2014
 IC Months; April through November

• Hindcast evaluations performed in a cross-validation mode

2. Data and methodology

Data: 1999–2015

- CFSv2 45-day hindcasts (1999–2010) and forecasts (2011–15)
- CFSR for 1999 - 2015
- Best Track Data: Atlantic Hurricane Database, NE/NC Pacific Hurricane Database, RSMC Tokyo-Typhoon Best Track Data

Methodology:

- The forecast model is based on the statistical relationships between observed tropical storm activity and model predicted large-scale circulation anomalies and linear regressions.
- Predictors: vertical wind shear (VWS; $U_{200} - U_{850}$), sea level pressure (SLP), and two MJO indices.
- The forecast skill is cross-validated over the 1999–2014 period.
Correlation between weekly TC activity and corresponding weekly SST/atmospheric circulation fields

Weekly mean data: 7-day average from Sunday to Saturday

Total 31 weeks from May to December

Weekly SST: NOAA OISST v2

Atmospheric fields (CFSR): vertical wind shear U200–U850, 500-mb height and relative humidity, sea level pressure

Weekly TC activity: sum of the days of each TC over the 7-day period

Relationship between Weekly TC activity and the MJO phase

A similar correlation analysis will be performed using the observed weekly TC activity and the SST/circulation from the CFSv2 45-day hindcasts. The regions of high correlations are used to make up for area-averaged indices as potential predictors.
Correlation between Weekly SST and Weekly TC Activity
Weekly TC activity smoothed

Example of Atlantic weekly TC activity
Smoothed vs. Unsmoothed

Color shadings (correlation > 0.1):
Above the 95% significance level

/cpc/namecpt/hui/2015_R2O/SST
Correlation between Weekly Wind Shear and Weekly TC Activity
Weekly TC activity unsmoothed

Unlike SST field, vertical wind shear is also highly correlated with the unsmoothed TC activity.
Correlation between Weekly Sea Level Pressure and Weekly TC Activity

Weekly TC activity smoothed

The weekly TC activity is negatively correlated with local SLP.
Effect of MJO on Weekly TS Activity

- Daily MJO index
- Weekly MJO index (7-day average of daily MJO index)
- Composite of weekly TCs based on 8 MJO phases
Composites of TC Genesis and TC Activity Based on MJO Phase

Composite: TC Genesis/MJO Event May-Nov 7-day mean

Atlantic

E. Pacific

W. Pacific

Composite: TC Activity/MJO Event May-Nov 7-day mean

Atlantic

E. Pacific

W. Pacific
CFSv2 45-day Hindcast Evaluation
Wind shear: U200 – U850

- Anomaly correlation between CFSv2 45-day hindcasts and CFSR
- Weekly data: 7-day average from Sunday to Saturday
- May – November: 31 weeks
- 1999 – 2012
- Different leads: week 1 to week 4

Correlation between observed weekly TC activity and CFSv2 45-day hindcast wind shear

- Atlantic, E. Pacific, W. Pacific TC activities
- OBS: CFSR
- CFSv2 45-day hindcasts: from week 1 to week 4
- Potential predictors: area-average over regions with high correlations
Atlantic TC Correlation
TC Activity vs. U200–U850
May–November (31 weeks)
1999–2012
TC Activity: Smoothed

CFSR

Week 1

Week 3

Week 2

Week 4
E. Pacific TC Correlation
TC Activity vs. U200–U850
May–November (31 weeks)
1999–2012
TC Activity: Smoothed
W. Pacific TC
Correlation
TC Activity vs. U200–U850
May–November (31 weeks)
1999–2012
TC Activity: Smoothed
Sea Level Pressure (SLP)
- Anomaly correlation between CFSv2 45-day hindcasts and CFSR
- Weekly data: 7-day average from Sunday to Saturday
- May – November: 31 weeks
- 1999 – 2012
- Different leads: week 1 to week 4

Correlation between **observed** weekly TC activity and **CFSv2 45-day hindcast** SLP
- Atlantic, E. Pacific, W. Pacific TC activities
- OBS: CFSR
- CFSv2 45-day hindcasts: from week 1 to week 4
- Potential predictors: area-average over regions with high correlations
Anomaly Correlation: Weekly SLP
CFSv2 45-day Hindcast vs. CFSR
May-November (31 weeks) 1999-2012

Week 1

Week 3

Week 2

Week 4

Color bar:
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Atlantic TC Correlation
TC Activity vs. SLP
May–November (31 weeks)
1999–2012
TC Activity: Smoothed
W. Pacific TC
Correlation
TC Activity vs. SLP
May–November (31 weeks)
1999–2012
TC Activity: Smoothed

Week 1

Week 3

Week 2

Week 4
Forecast skill for weekly TC activity (1999 – 2014)

Fig. 5. Forecast skill for weekly TC activity using different predictors and based on the cross-validations.
Experimental Prediction for 2015 – 2016 Seasons
Probability forecast for 2015

(a) Week 3 Forecast

- **Atlantic**
 - 20/31 (65%)
- **E. Pacific**
 - 15/31 (48%)
- **W. Pacific**
 - 13/31 (42%)

(b) Week 4 Forecast

- **Atlantic**
 - 21/31 (68%)
- **E. Pacific**
 - 17/31 (55%)
- **W. Pacific**
 - 12/31 (39%)

Fig. 6. Probability forecasts of week 3 and 4 TC activity for 31 weeks from May to November 2015 using VWS as a predictor.
Week 3 and 4 forecasts for the Atlantic with vertical wind shear as a predictor.
Summary

• Evaluation of the CFSv2 45-day hindcasts for the hybrid model formulation for Weeks 1 – 4 TS activity prediction completed.

• Multiple regression relationship for the weekly TS activity established based on the CFSv2 hindcast data for 1999-2012. The hybrid model performance evaluated in cross-validation mode with the hindcast experiment, indicating fair level of forecast skills for weeks 3 and 4 TS activity.

• Real-time prediction experiment based on this hybrid system performed for 2015 season and continues in 2016. It is planned to implement operationally at CPC in 2017.

• This project contributes towards the NGGPS/R2O objective on the development of forecast products for Week 3 and 4.