Test and Evaluation of Rapid Post-Processing and Information Extraction From Large Convection Allowing Ensembles Applied to 0-3hr Tornado Outlooks

James Correia, Jr. OU CIMMS/SPC
Daphne LaDue, OU CAPS
Chris Karstens, OU CIMMS/NSSL
Kent Knopfmeier, OU CIMMS/NSSL
Dusty Wheatley, OU CIMMS/NSSL

Reminder - R20: Where do we fit?

Addresses NOAA objective:

"...post-processing tools and techniques to provide effective decision support for high-impact weather."

Addresses high priority topic 4:

"...daily severe weather prediction using rapidly updating ensemble radar data assimilation and forecasts while minimizing data latency via post processing strategies for information extraction."

Reminder: Post-processing Strategy

- The proposed post-processing paradigm will consist of five steps:
 - 1. Rapid ID of predefined but broad objects for the purposes of filtering and data reduction,
 - 2. Transmitting reduced data sets while retaining information (why send zeros!)
 - 3. Reception and regridding data (adaptable)
 - 4. Generation of predefined probabilities (static probabilities broad applicability)
 - 5. Generation of user-defined probabilities (on-the-fly post processing for INSIGHT in Scientific forecasting)

Reminder: Purpose

- Match the needs of forecasters with tools, data, and information that can help them make better judgments/decisions.
- Smaller, faster, agile data in a time-pressure environment

Accomplishments

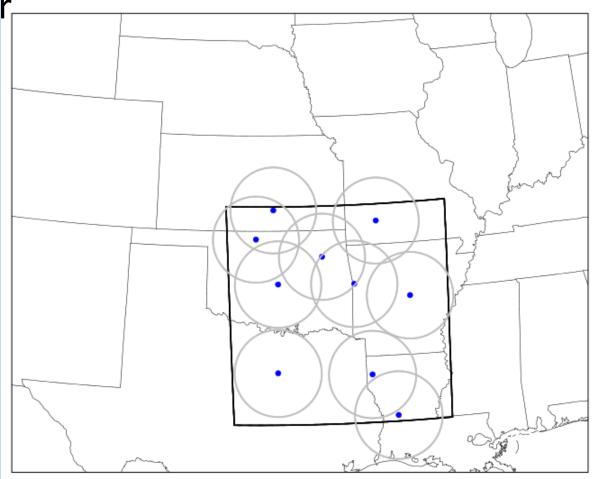
- Through interviews of NWS forecasters learned that CAM trust is low b/c of low familiarity and un-calibrated expectations
- Developed & tested our post-processing approach to meet situational awareness needs
- Minimized data while providing a similar amount of information (20kb vs 18MB)
- Implemented system in real-time during HWT 2016 PHI experiment with minimum latency (~4 minutes) for this task

Year 1: what have we done

- I. Forecaster interviews on the use of model/ensemble forecasts for short term prediction of severe weather
- II. Planning, testing, development, and implementation of our post-processing into the 2016 HWT Probabilistic Hazard Information (PHI) tool experiment

I. WFO and NCEP center Interviews

- NWS Forecasters (7 WFOs and a National Center)
- Purpose to understand forecasters:
 - Current use of 0-3h model guidance &
 - Openings: Challenges, opportunities, needs, pitfalls
- Prelim findings:
 - All about now; All about observations; ingredients based approaches relied on heavily
 - Mixed familiarity with hi-res models
 - For all: unsure when/how much to trust for 0-3h
 - Expectations are un-calibrated
 - Work processes have not incorporated models yet

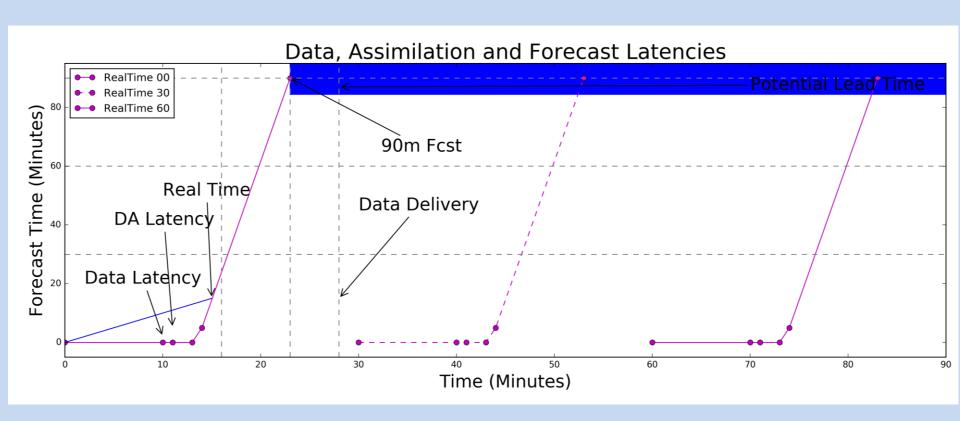

Results: Openings for hi-res models

- Forecast value not equivalent to quality
 - We should want to equip forecasters with techniques to anticipate _____!
 - E.g. that the model produces supercells is important & useful
- Forecasters want lots of data up-front to learn new tools → TRUST
 - Need to know strengths and weaknesses but:
 When/how/why does it work vs not work?
 Expectations to work on all events*
- WDTD Training on "algorithms"
 - Use them first for triaging
 - Cannot be used at face value, need to know strengths and weaknesses

II. Post-processing in HWT PHI 2016

- NEWS-e 18 member mixed physics ensemble init by HRRR-E*
- Cycled radar data assimilation (15m)
- Forecasts out 90m every 30m (00 and 30 past the hour, 19-03 UTC)

3-km HRRRE background and nested NEWS-e grid



Radar locations within NEWS-e grid shown as blue dots with 150-km range rings

NSSL Experimental Warn on forecast System for Ensembles (NEWS-e)

*HRRR-E run by GSD as part of the Warn on Forecast initiative

NEWS-e during HWT 2016: Each Run

Have minutes to post-process and deliver to stay relevant

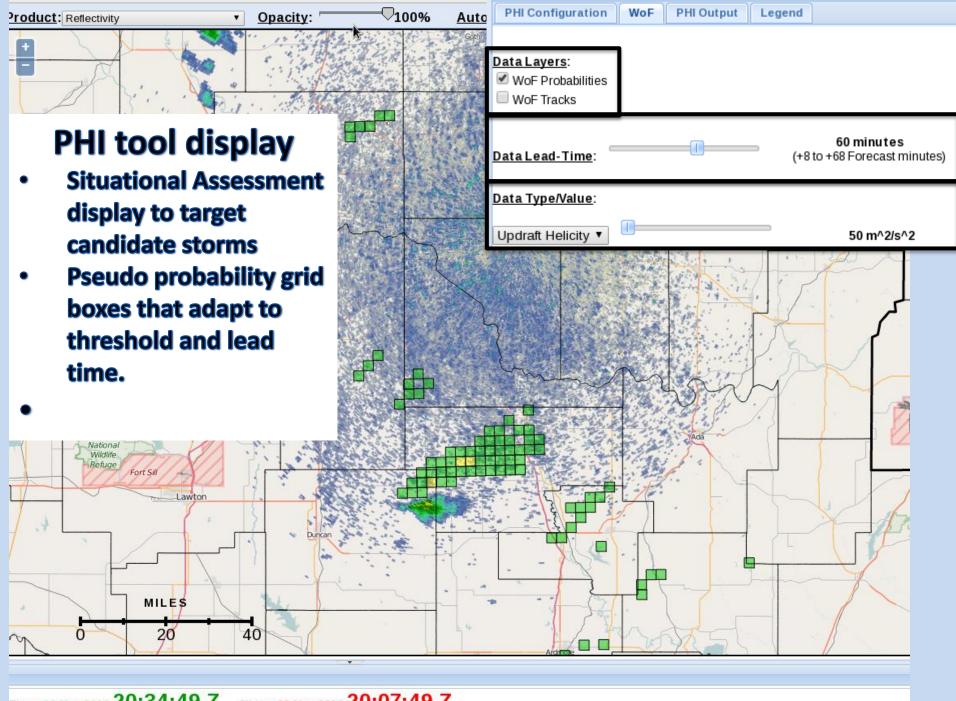
Hazardous Weather Testbed Probabilistic Hazard Information 2016

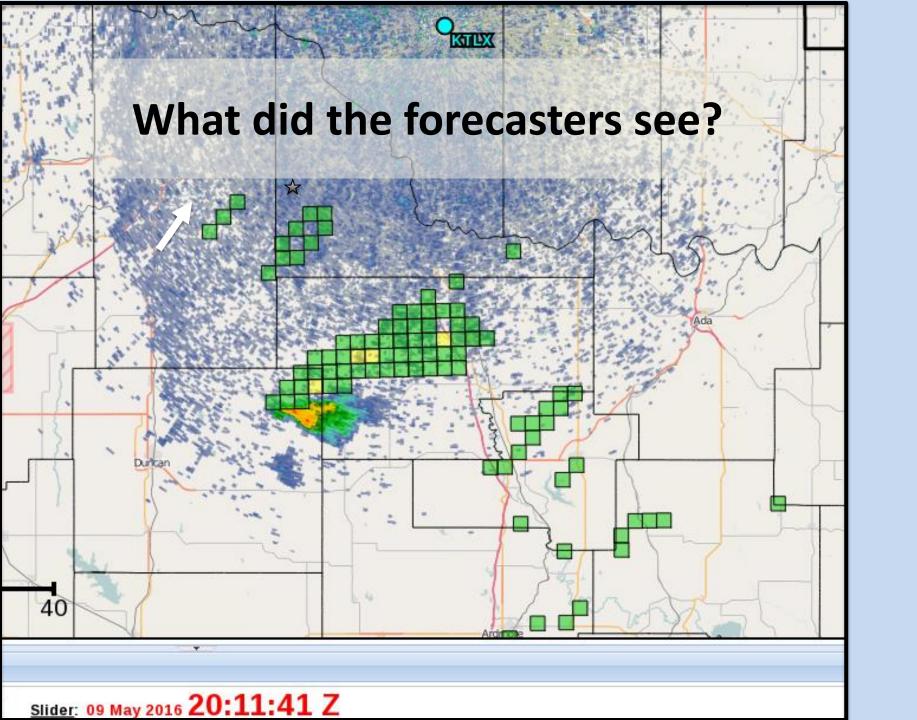
Goals:

- Present NEWS-e information as close to base data.
 - 1. See all the UH and vorticity tracks
 - Ensemble is under-dispersive: tracks lie on top of one another, so make probability "grids"
 - Probability grids aren't just number of members b/c of TIME (members & time conflated);
 - not appropriate to use Gaussian smoothing/neighborhoods
 - 4. Side benefit: by worrying more about the time dimension we got to adaptive pseudo-probability (frequency)

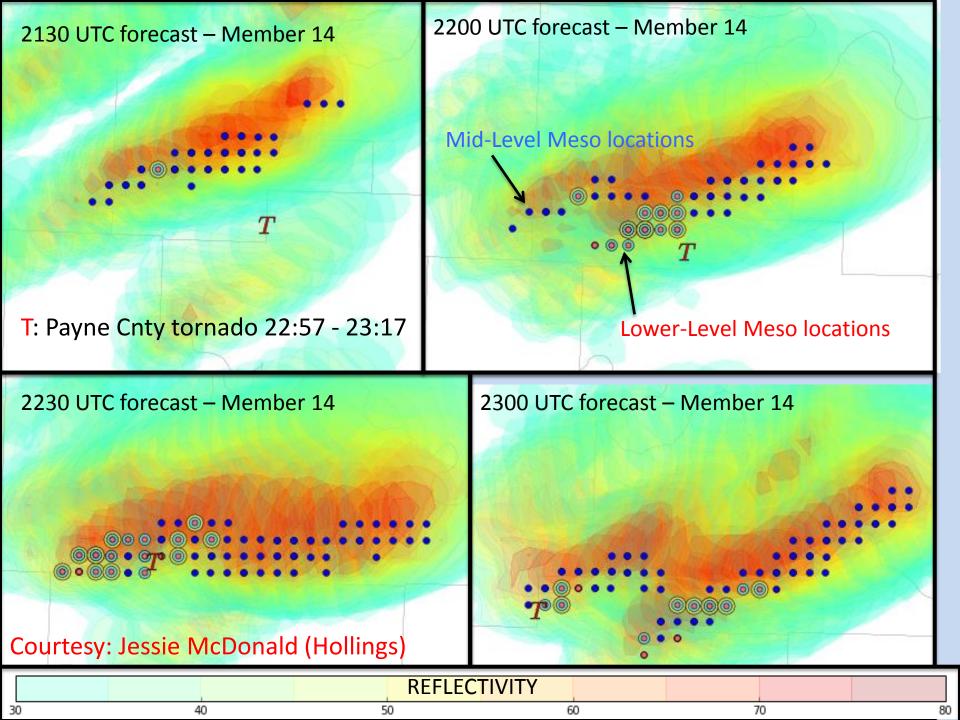
HWT PHI 2016

Challenge:


- Gain insight for using NEWS-e in warning ops.
 - 1. Match tracks to individual storms (observed & simulated)
 - 2. Interest in data queries?
 - 3. Look for ways to add value to a "radar first" storm interrogation
 - Want to help anticipate near term changes or development


HWT PHI 2016

Challenge:


- Can we apply this data at relevant scales?
 - 1. Down to the 5-minute output time
 - Down toward the scale of radar features
 - At super-res, 1 model grid box = $^{\sim}144$ radar pixels
 - 3. Update frequency for new model forecasts

So what does this display look like?

R -> O Data Collection

- Each day: displaced (limited operational data)
 and real-time weather (operational data)
- 3 week experiment: 12 operating days
 - 9 being "operational" and
 - 3 for learning and testing w/ new participants.
- 9 forecasters, 3 per week

Description	Good	Code fail	Domain N/A	Compute down	Data failure	Total
Week 1	1	3				4
Week 2	2			1 (JET)	1	4
Week 3	3		2			4

Preliminary HWT observations

- NWS Training warns the forecasters about "algorithms":
 - "Cannot algorithm EVERYTHING"
 - Cannot anticipate every possible scenario
- Forecasters:
 - Used the guidance for identifying hot spots
 - Not expecting answers/accuracy, inferring usefulness*
 - Confidence in warning decisions (warn & not to warn) because

"right now we have no tornado guidance"

- Accuracy
 - In situational awareness paradigm not a real problem. Can revert to radar for final human data assimilation
 - Can easily discount spurious convection when not on radar "always have conflicting information"
 - Expectations: Still want accuracy, reliability, calibration on range of events/event types

Summary

- Variables like UH and 3d vorticity already available in some models (transition to operational use)
- Techniques result in data reduction with minimal latency (will work to improve and refine this & add variables/displays)
- Mixed method of social and physical science is working well
 - Interviews and experiment paired well to tackle the postprocessing problem from the perspective of the forecasters (and their challenges)
- Cross pollination with VORTEX SE (D. LaDue)
 - Used VORTEX-SE case study in experiment
 - VORTEX-SE steering committee is using our interview data

Accomplishments

- Through interviews of NWS forecasters learned that CAM trust is low b/c of low familiarity and un-calibrated expectations
- Developed & tested our post-processing approach to meet situational awareness
- Minimized data while providing a similar amount of information (20<u>kb</u> vs 18<u>MB</u>)
- Implemented system in real-time during HWT 2016 PHI experiment with minimum latency (~4 minutes) for this task