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NOAA Collaborators

Lans Rothfusz, Alan Gerard (National Severe
Storms Laboratory / Hazardous Weather Testbed)

NWS Storm Prediction Center staff

many NWSFO staff
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Current warning paradigm:

Make extrapolative prediction
based on radar and storm spotter
observations

“Warn-on-Detection”

Forecasting A Continuum of
Environmental Threats (FACETS):

Continuously updating flow of
Information

Storm-scale ensembles (“Warn on
Forecast”)

Probabilistic Hazard Information
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Measure model improvements at the scale of
individual thunderstorms (short term predictability).

Understand the strengths and limitation in the
models’ simulation of storms and storm evolution
over a diverse spectrum of convective modes.

Demonstrate in Hazardous Weather Testbed.




Project Plan

. Acquire and prepare data sets
. Develop and refine software

. Objectively classify convective storms
Observational data
Model output

. Compare observed and model storm-typing and
severity

. Real-time testing and evaluation with forecasters




Acquire/Prepare Data Sets

Multi-Year Reanalysis of Remotely Sensed Storms
(MYRORSS; pronounced “mirrors”)

Storm Prediction Center database of convective
modes

NSSL WRF storm-object data set




Multi-Radar Multi-Sensor System
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Examples: Multi-sensor data
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Show physical
relationships
between data
fields from
multiple sensors

Storm tracks and
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generated at any
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CIMMS Review August 17-18, 2015




MRMS Domain




MYRORSS

Multi-Year Reanalysis of
Remotely Sensed Storms
(MYRORSS)

Y 15+ years of storm
statistics

¥y Data Mining

Y MRMS & MYRORSS

are foundational to the
effort to improve NWS
warning services
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Storm classification
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Storm Convective Modes

- Dataset

We supplement Smith et al. 2012,
including weak severe, non-severe,
and synthetic verification measures 7 |/ QLCS + Line RM + Line Marginal 2716
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NSSL-WRF Storm Features

HOE N

5 10 15 20 25 30 34 40 44 50 55 60 65 70
CAPS CN 24 May 2011
. /7 |Object .

[D storms: Balance , _
[No Object (size)

detection & model — _ 2
resolution against g O Object (mag) —
season, size, mode ¥ Merged Object

and reproducibility Comp Ref

spread-growth 2000 UTC

algorithm double

threshold-double area I
>34 dBz >44 dBz
8 pixels 2 pixels

contig. non-
contig.

—p*
M001ITC | 2200 1ITC

Correia, Jr, J., J. Kain, A. J. Clark, 2014: A four year climatology of simulated convective
storms from NSSL WRF. 94th AMS Annual Meeting, Atlanta, GA, J11.2.




Develop | Refine Software

Storm object identification / tracking

Machine learning

Visualization / blending of MRMS + model
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Storm Attribute

-20 C Merged Reflectivity

0 C Merged Reflectivity

Aspect Ratio

0-2 km Merged Azimuthal Shear
3-6 km Merged Azimuthal Shear
0-6 km Shear Magnitude

0-1 km Storm Relative Helicity
0-3 km Storm Relative Helicity
Longevity

Maximum Expected Size of Hall
(MESH)

Storm classification inputs from

MYRORSS / MRMS

Max 30 Minute MESH

Most Unstable CAPE

Most Unstable LCL Height
Probability of Severe Hail (POSH)

Quality Controled Merged
Reflectivity Composite

Severe Hail Index (SHI)

Storm Size

Surface CAPE

Surface Dewpoint

Surface Temperature

Vertically Integrated Liquid (VIL)

VLAB Forum: MYRORSS



Storm classification:

Example Decision Tree

<=64.79 Max > 64.79

2000 km Saliency Size

<=16299.81

2000 km Saliency
Longevity

<= 21610

200 km
Saliency Size

Max
Reflectivity

<=55.16 >55.16

2000 km
Saliency Mean
Reflectivi

> 27279.37

2000 km
Saliency Aspect

800 km
Saliency Mean

= 49.89
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CE{EI{} km Saliency 5ize>

> 16299.81

Max
Reflectivity

10 <= 54.89 > 54.83




Machine Learning

NSSL Prototype Probabilistic Hazard Information (PHI) Tool Product:

s e WAE e Tested on storm

PHI Configuration Object History WoF PHI Output Legend

Obic 0 57551 & e ifetime forecast
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Duration | Severe Wind Probabilities
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* logistical
regression

Trend of the expected storm lifetime. * AdaBoosting




MYRORSS Data Mining

3) Then extract storm

properties:

* Other MRMS data
for each cluster
(radar, satellite,
lightning)

« Background
environment (from
NWP model
analysis)

2) Storm

K i Clustering and
J Lo 2l Tracking

1) Reflectivity (or 12 analyses / hour
other image thatcan  x 24 hours / day

be clustered) X 365 days / year

105,120 analyses / year

Millions of storms / year




NSSL Prototype Probabilistic Hazard Information (PHI) Tool

Hazard Information
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Accomplishments

1. Acquire/prepare data sets

Multi-Year Reanalysis of Remotely Sensed
Storms (MYRORSS; pronounced “mirrors”)

Storm Prediction Center database of convective
modes (+ supplemental data)

NSSL WRF storm-object data set

2. Develop / refine software
Storm object identification / tracking
Machine learning
Visualization / blending of MRMS + model




Ongoing work / future plans

Objectively classify storms

Machine learning algorithms applied to storm
object data

Distributions of storm type and lifetime based on
environment

Compare observed and model storm-typing and
severity

Real-time testing and evaluation with forecasters
(Spring 2017)




