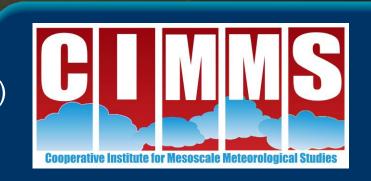


Pls: Travis Smith, Chris Karstens,
Jimmy Correia, Kiel Ortega
U. Of Oklahoma / CIMMS (+ NOAA/NSSL&SPC)



NOAA Collaborators

- Lans Rothfusz, Alan Gerard (National Severe Storms Laboratory / Hazardous Weather Testbed)
- NWS Storm Prediction Center staff
- many NWSFO staff
- NCEI

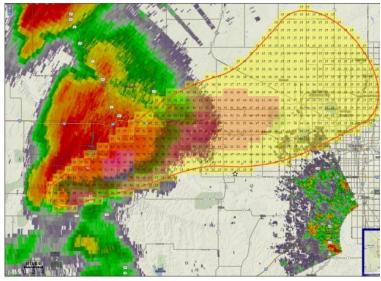
Current warning paradigm:

- Make extrapolative prediction based on radar and storm spotter observations
- "Warn-on-Detection"

Forecasting A Continuum of Environmental Threats (FACETs):

- Continuously updating flow of information
- Storm-scale ensembles ("Warn on Forecast")
- Probabilistic Hazard Information





Measure model improvements at the scale of individual thunderstorms (short term predictability).

Understand the strengths and limitation in the models' simulation of storms and storm evolution over a diverse spectrum of convective modes.

Demonstrate in Hazardous Weather Testbed.

Project Plan

- 1. Acquire and prepare data sets
- 2. Develop and refine software
- 3. Objectively classify convective storms
 - Observational data
 - Model output
- Compare observed and model storm-typing and severity
- 5. Real-time testing and evaluation with forecasters

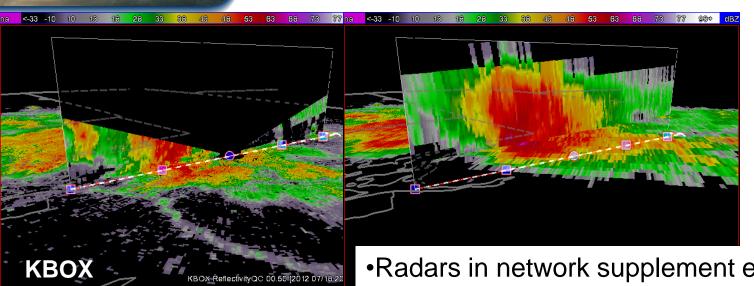
Acquire/Prepare Data Sets

Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS; pronounced "mirrors")

Storm Prediction Center database of convective modes

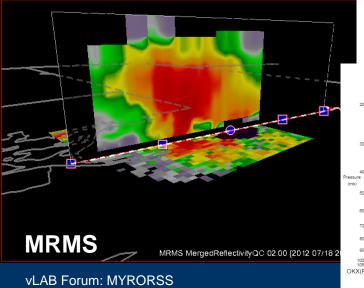
NSSL WRF storm-object data set

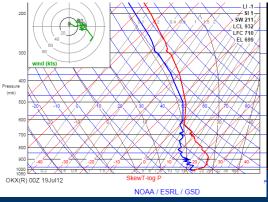
Multi-Radar Multi-Sensor System

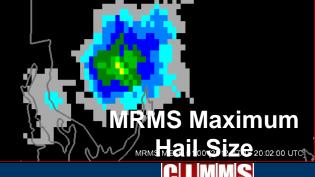


other neighboring radars

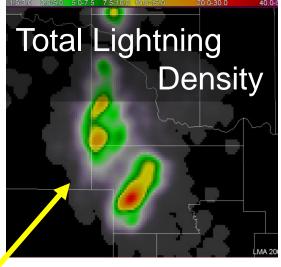
- Radars in network supplement each other:
 - Overlapping coverage
 - •Fills in gaps in radar coverage
 - Increased sampling frequency
 - Seamless, consistent

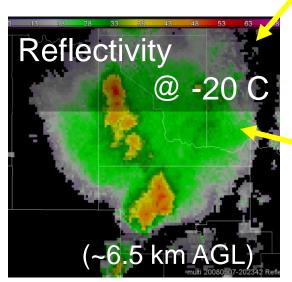


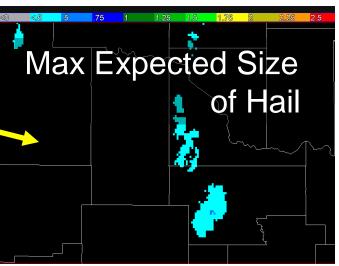




Near-surface reflectivity







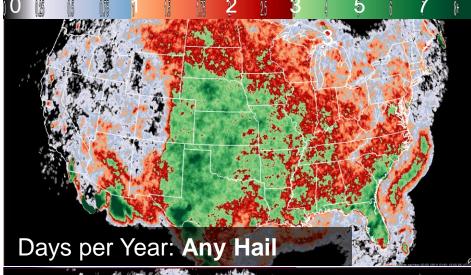
Examples: Multi-sensor data fields

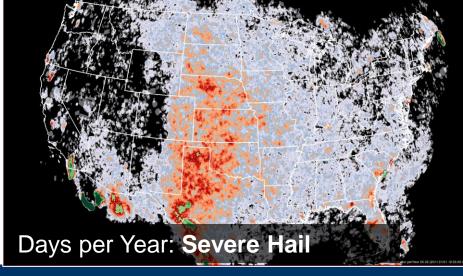
 Show physical relationships between data fields from multiple sensors

Storm tracks and trends can be generated at any spatial scale, for any data fields

MRMS Domain





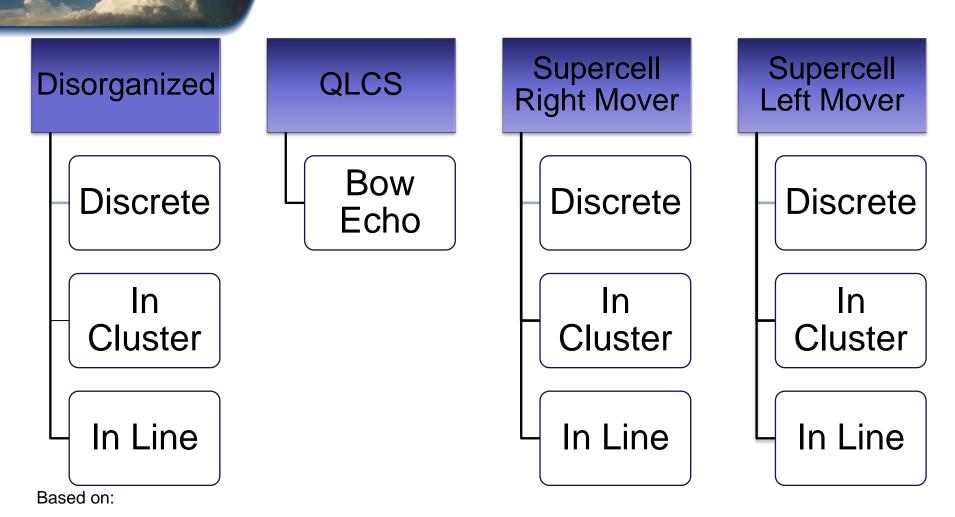


MYRORSS

Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS)

- 15+ years of storm statistics
- Data Mining
- MRMS & MYRORSS are foundational to the effort to improve NWS warning services

Storm classification

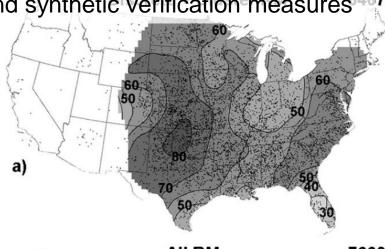


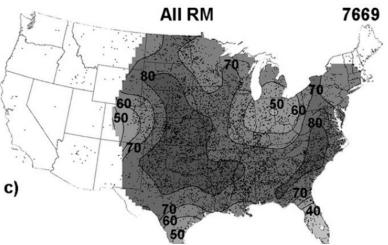
Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. *Wea. Forecasting*, **27**, 1114–1135.

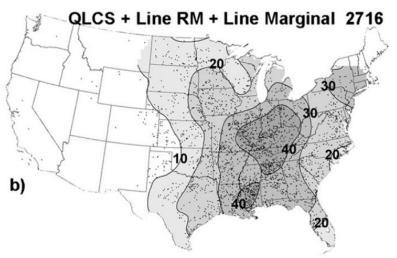
Storm Convective Modes

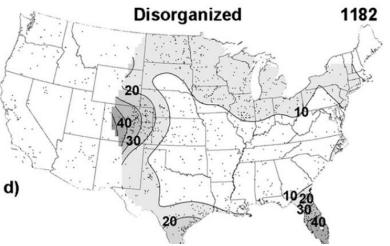
Dataset

We supplement Smith et al. 2012, including weak severe, non-severe, and synthetic verification measures 4.7



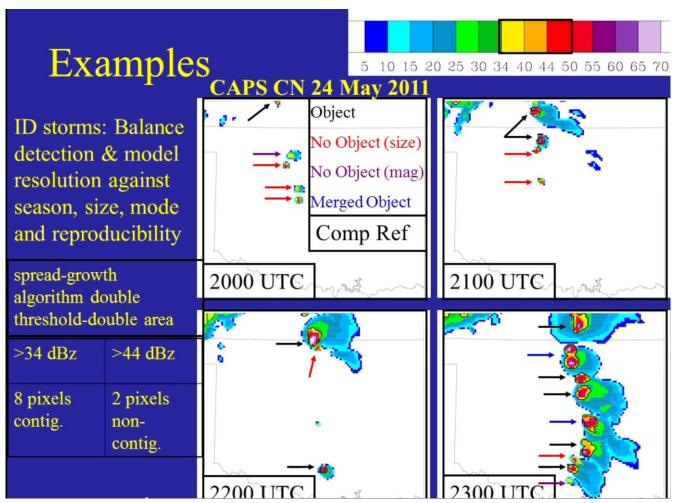






A CONTRACTOR OF THE PARTY OF TH

NSSL-WRF Storm Features



Correia, Jr, J., J. Kain, A. J. Clark, 2014: A four year climatology of simulated convective storms from NSSL WRF. 94th AMS Annual Meeting, Atlanta, GA, J11.2.

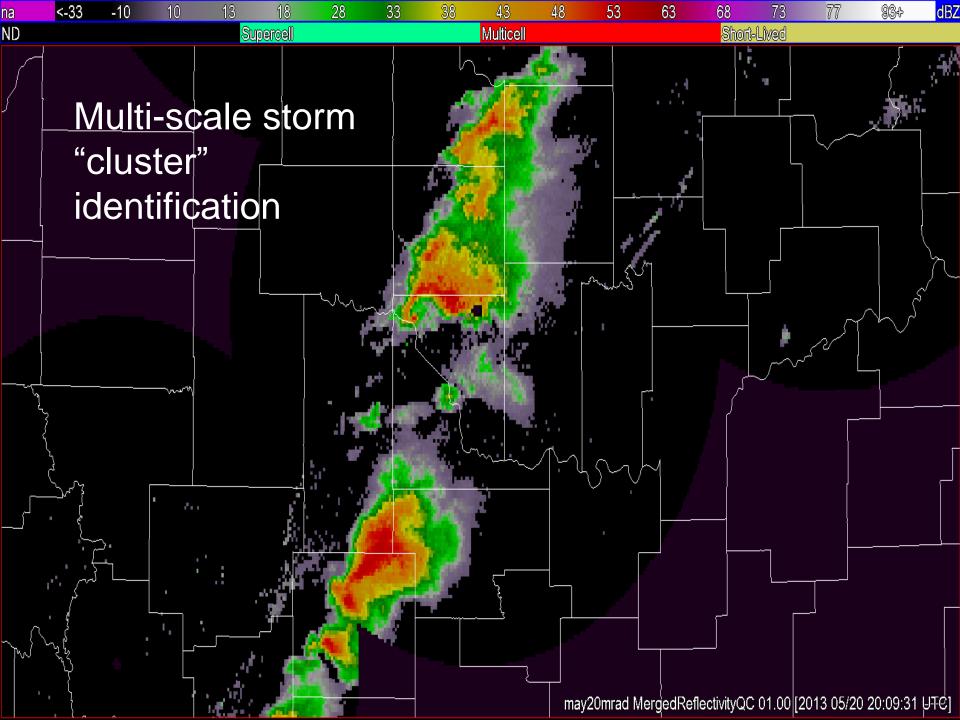
and w.

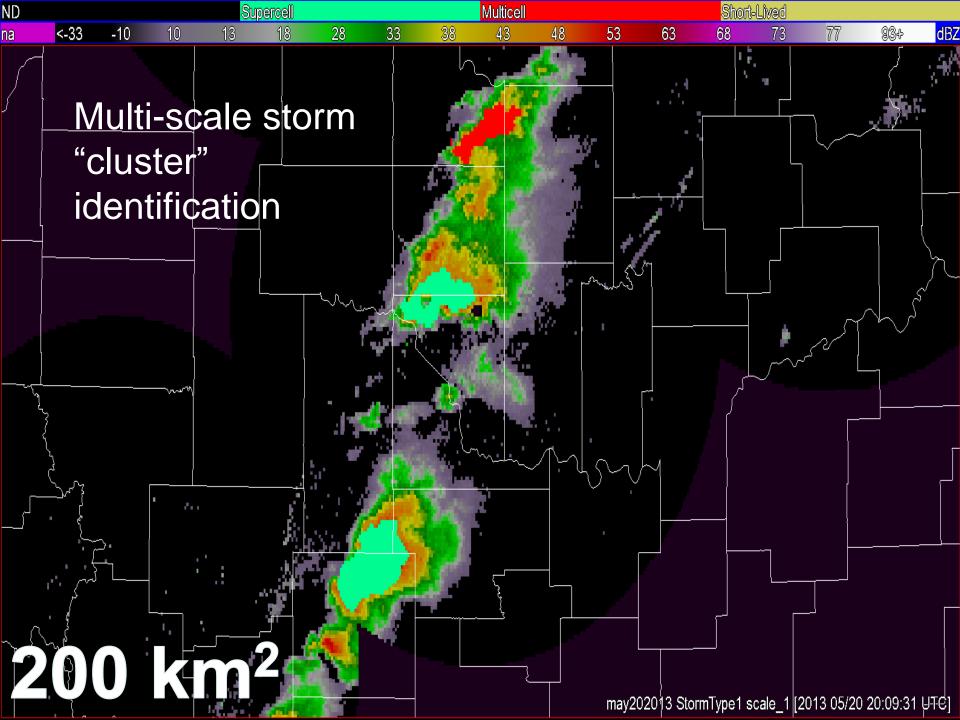
Develop / Refine Software

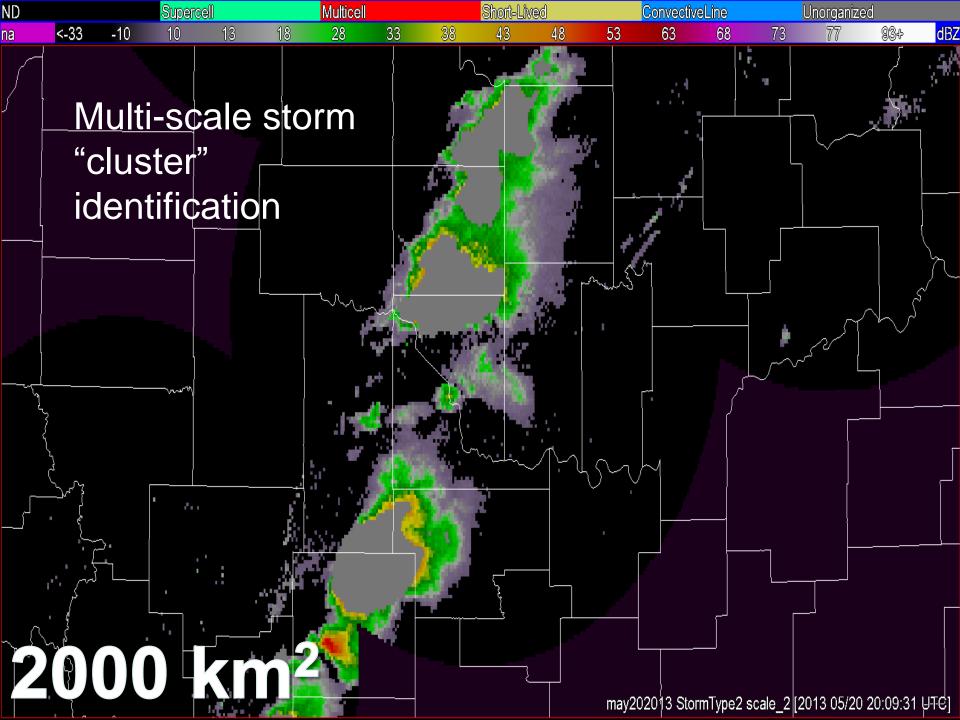
Storm object identification / tracking

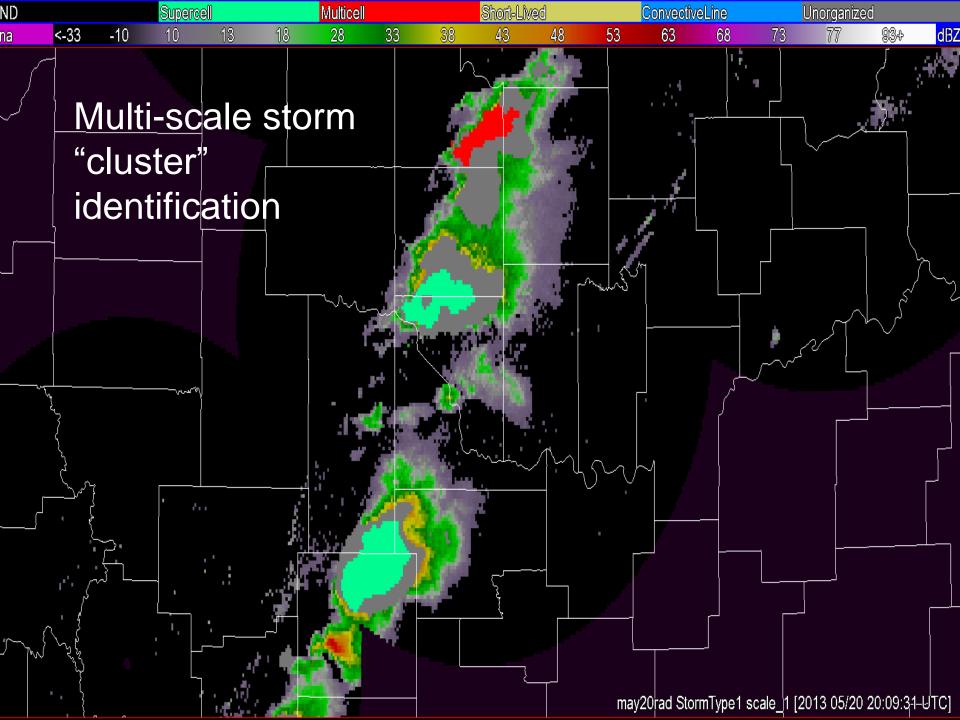
Machine learning

Visualization / blending of MRMS + model









Storm classification inputs from MYRORSS / MRMS

Storm Attribute

-20 C Merged Reflectivity

0 C Merged Reflectivity

Aspect Ratio

0-2 km Merged Azimuthal Shear

3-6 km Merged Azimuthal Shear

0-6 km Shear Magnitude

0-1 km Storm Relative Helicity

0-3 km Storm Relative Helicity

Longevity

Maximum Expected Size of Hail (MESH)

Max 30 Minute MESH

Most Unstable CAPE

Most Unstable LCL Height

Probability of Severe Hail (POSH)

Quality Controled Merged Reflectivity Composite

Severe Hail Index (SHI)

Storm Size

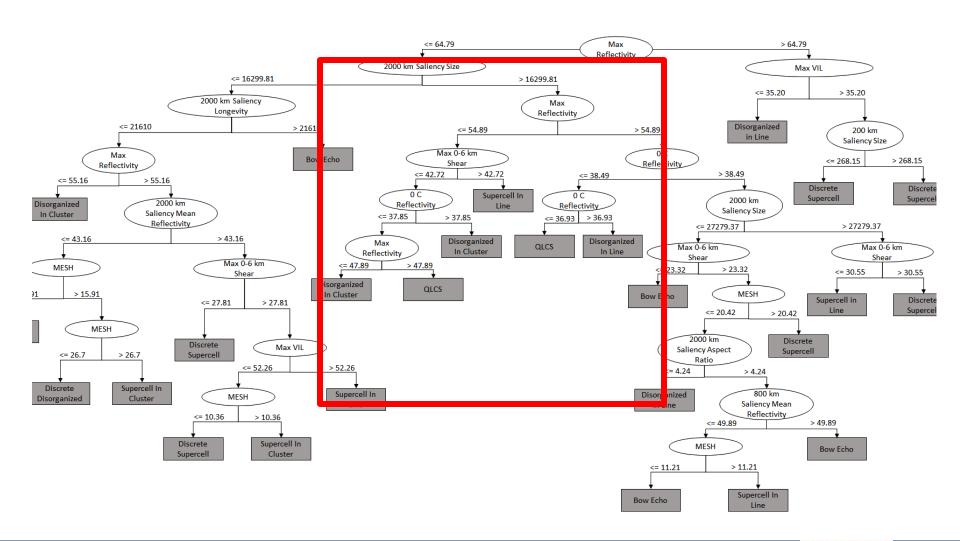
Surface CAPE

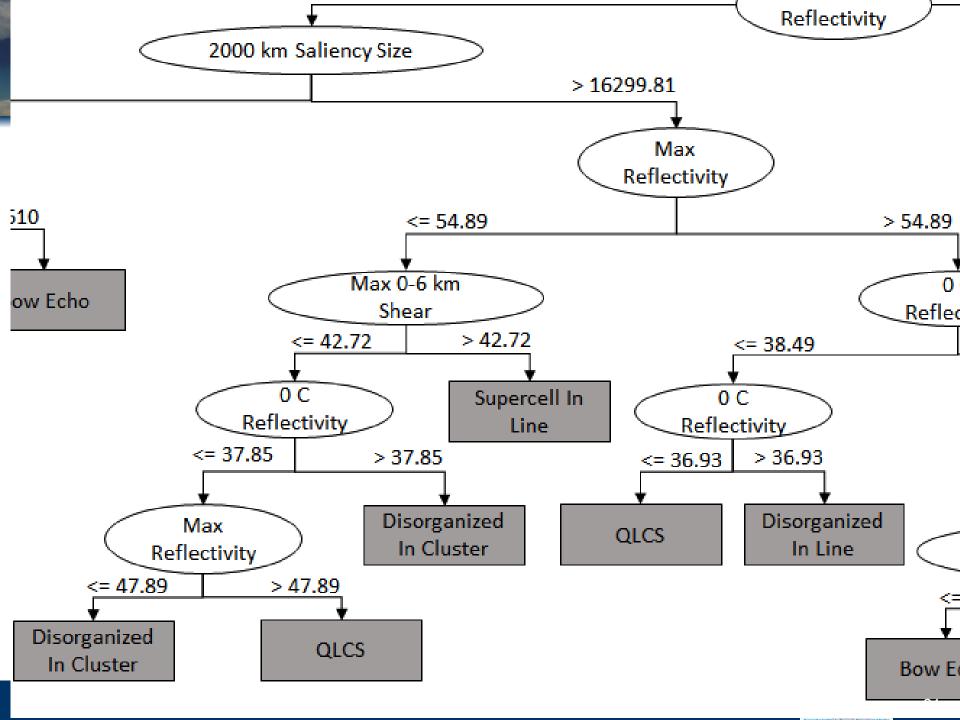
Surface Dewpoint

Surface Temperature

Vertically Integrated Liquid (VIL)

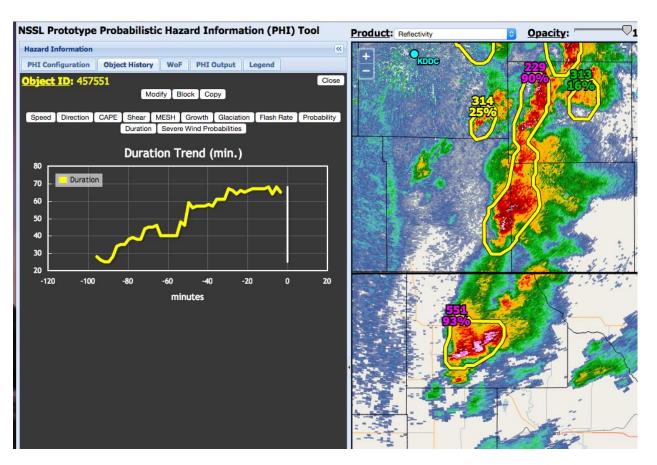
Storm classification: Example Decision Tree





AL THE STATE OF TH

Machine Learning

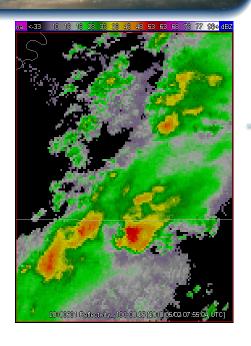


Trend of the expected storm lifetime.

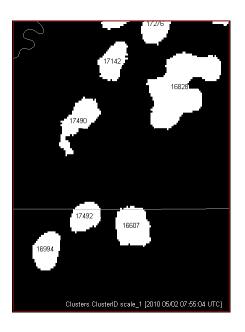
Tested on storm lifetime forecast

- gradient boosted regression trees
- random forests
- logistical regression
- AdaBoosting

MYRORSS Data Mining



2) StormClustering andTracking



- 3) Then extract storm properties:
- Other MRMS data for each cluster (radar, satellite, lightning)
- Background environment (from NWP model analysis)

1) Reflectivity (or other image that can be clustered)

12 analyses / hour

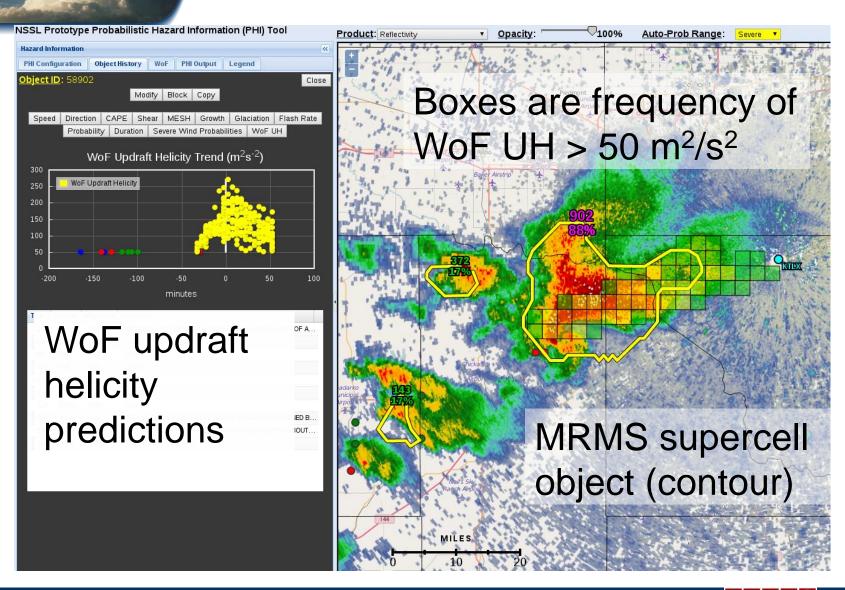
X 24 hours / day

X 365 days / year

105,120 analyses / year

Millions of storms / year

HWT Real-Time Visualization



Accomplishments

1. Acquire/prepare data sets

- Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS; pronounced "mirrors")
- Storm Prediction Center database of convective modes (+ supplemental data)
- NSSL WRF storm-object data set

2. Develop / refine software

- Storm object identification / tracking
- Machine learning
- Visualization / blending of MRMS + model

Ongoing work / future plans

Objectively classify storms

- Machine learning algorithms applied to storm object data
- Distributions of storm type and lifetime based on environment

Compare observed and model storm-typing and severity

Real-time testing and evaluation with forecasters (Spring 2017)

