Development of Advanced Data Assimilation Techniques for Improved Use of Satellite-Derived Atmospheric Motion Vectors

James Jung
Sharon Nebuda and Agnes Lim
Jaime Daniels and Wayne Bresky
John Derber, Andrew Collard, Vijay Tallapragada, and Mingjing Tong
John Le Marshall
New Nested Tracking AMV Algorithm for GOES-R ABI – prepare using GOES-13/15

- Task 1: Assimilate Clear Air Water Vapor AMVs in GFS, determine GSI modifications, show impact for two seasons, share results with NCEP
- Task 2: Demonstrate readiness for operational GOES-R AMVs in HWRF, determine GSI modifications, share results with HWRF

GSI modifications to use new AMV data with current operational models will provide experience with evaluating the successful assimilation of AMV data in the GSI when paired with the future NGGPS model.
Clear Air Water Vapor AMVs

Task 1 - Clear Air Water Vapor AMV

- Motion derived by tracking moisture gradients in clear target scenes using GOES 13/15 Channel 3 with center frequency at 6.5 μm
- Height is assigned using a cold sample of pixels in the scene which are compared to the forecast temperature profile for a height estimate
- AMVs are generally located around the 350 hPa level
- Data is available in current operational input files

GOES-15 Imager Weighting Functions
Motivation: Improve data coverage in the tropics

GOES IR & Cloud Top WV AMV above 500 hPa

No Clear Air WV AMVs

18Z 15 Aug 2014
Motivation: Improve data coverage in the tropics

GOES IR & Cloud Top WV AMV above 500 hPa

With Clear Air WV AMVs

18Z 15 Aug 2014
Quality Control

Quality Indicator (QI) without the forecast component and Expected Error (EE)
High values of QI and low values of EE should indicate better quality AMV data
Neither parameter show skill in predicting AMV departure from the GFS first guess

Vector Difference = $\sqrt{(U_{AMV} - U_{GFS})^2 + (V_{AMV} - V_{GFS})^2}$

Color indicates number of data in the 2d histogram bin
Black line shows average value for the given x bin

6-21 Aug 2014
Quality Control

Minimum speed requirement: 10 m/s. Conservative, could be relaxed for GOES-R
Maximum direction departure: 50°
Near surface check over land
Apply the Log Normal Vector Difference (LNVD) constraint: LNVD < 3

$$\text{LNVD} = \text{Sqrt} \left[\frac{(U_{AMV} - U_{GFS})^2 + (V_{AMV} - V_{GFS})^2}{\text{LN} \left(\text{Speed}_{AMV} \right)} \right] < 3$$

More about LNVD:

- LNVD was first introduced for MODIS AMV QC
- As AMV speed increases, allowed speed departure increases while allowed direction departure decreases
- For slow AMVs, less speed departure allowed but larger direction departure is allowed
- Should reevaluate limit for regional or hurricane applications or remove entirely
- With a speed minimum of 10 m/s, the LNVD<3 also limits the direction departure to less than 50°
Observation Error Current settings for AMV observation errors in GFS

GOES IR and CTWV AMV error profiles
Increased to account for the higher data volume when temporal frequency increased to hourly winds

Wind Error Profile

Pressures hPa

Ob Error m/s

GOES
Observation Error

Justify using same error settings by comparing OMB statistics of IR and CTWV with CAWV

OMB Departures for CAWV are largest in the Eastern Pacific where current operational data is sparse.
Observation Error

Mean Speed OMB m/s as a function of Latitude

CAWV have larger positive speed bias but similar behavior

Setting the minimum speed to 10 m/s increases the mean speed OMB for all AMV types but similar relationship exists

Positive bias could be due to height assignment for the layer movement

GOES IR
GOES CTWV
GOES CAWV

Limited Departure
LNVD < 3

6-21 Aug 2014
Observation Error

RMS Vector Difference OMB as a function of Latitude

CAWV have similar RMS vector difference largest in the tropics and is much lower than the 12-14 m/s error specified. For GOES IR and CTWV AMVs

No Departure Check

GOES IR
GOES CTWV
GOES CAWV

Limited Departure
LNVD < 3

6-21 Aug 2014
Comparison to Radiosondes
July-Sep 2015

Departure statistics for CAWV AMVs are similar to GOES (current algorithm). Cloud Top Water Vapor AMVs and Closer compared to IR AMVs.

Mean Speed Difference
IR: -0.77 m/s
CTWV: -0.2 m/s
CAWV: -0.1 m/s

Matched Radiosondes are within 35km, 25 hPa and 1 hour to the AMV.
Analysis and Forecast Skill Impact

GFS Hybrid ENKF T670-T254 - 2 seasons

1. July-Sep 2015 Experiment wve1, Control wvc1
2. Feb-Mar 2015 Experiment wve2, Control wvc2

Results show changes to the analysis circulation
~350 hPa in the tropics

Short term impact on the wind forecast skill
otherwise neutral impact in global and regional statistics
Sept Mean U and V at 350 hPa

U (m/s) 350 hPa
Time Average
00z01sep2015 to 18z30sep2015

V (m/s) 350 hPa
Time Average
00z01sep2015 to 18z30sep2015

wve1 - wvc1 ave = -0.00269288

wve1 - wvc1 ave = 0.00285992
March Mean U and V at 350 hPA

U (m/s) 350 hPa

Time Average

00z01mar2015 to 18z31mar2015

V (m/s) 350 hPa

Time Average

00z01mar2015 to 18z31mar2015

\[
\text{wve2} - \text{wvc2} \text{ ave}=0.0352907
\]

\[
\text{wve2} - \text{wvc2} \text{ ave}=-0.00844479
\]
200 hPa Tropical Wind Bias

500 hPa Tropical Wind Bias

200 hPa Tropical Wind RMSE

500 hPa Tropical Wind RMSE

July-Sep 2015

Forecast validated with Experiment Analysis
200 hPa Tropical Wind Bias

500 hPa Tropical Wind Bias

200 hPa Tropical Wind RMSE

500 hPa Tropical Wind RMSE

Forecast validated with Experiment Analysis

Feb-Mar 2015

P200 G2/TRO 00Z, 20150201-20150331 Mean

P500 G2/TRO 00Z, 20150201-20150331 Mean
Task 1: CAWV AMVs provide data in locations which are currently lacking AMVs

Forecast skill impact small to neutral with improvements to the wind forecast for the first 48 hours in the tropics

Analysis circulation is strengthened in the tropics at 350 hPa

Results have been presented to NCEP/EMC and software changes have been accepted

2nd Year evaluate CAWV AMVs produced with Nested Tracking Algorithm applied to Himawari-8 AHI imagery

Task 1: Clear Air Water Vapor AMVs are ready for operational use in GFS. Software modifications have been included in the pre-implementation version of the GSI.
Transition HWRF to assimilate hourly AMVs using the GOES-R format

1st Year
- Transition HWRF to use the new hourly GOES-R like AMVs
- Generate 4 seasons of AMVs (Jaime Daniels)
 - Vis, SWIR, IR, CTWV
- Review quality control procedures
- Run 4 season impact tests

2nd Year
- Test higher spatial and temporal AMVs
- Generate high spatial and temporal resolution AMVs (Jaime Daniels)
- Review quality control procedures
- Run 4 season impact tests
Progress to date

• Access to JET and rstprod were completed on 15 March 2016.

• GOES-R like AMVs for 5 storms in the year 2012 and 2013 were generated and converted to NCEP “operational” BUFR files.

• Two storms were run using the default trunk version of HWRF and the global AMV branch for GSI
 – **CTRL**: Heritage Winds (245 and 246) with gross = 1.3.
 – **EXP**: GOES-R like winds (240, 245, 246, 247 and 251, including RSO) with the removal of the log-normal vector difference check and gross = 2.5
Comparison of number of observations assimilated for 2012-08-05 12z
Progress to date

- What we found
 - O-B and O-A histograms are Gaussian, no bias after assimilation and standard deviation of O-A less than that of O-B for all wind types.
Infrared AMVs (245)

Cloud Top Water Vapor AMVs (246)
240 - Shortwave IR

247 - Clear Air Water Vapor

251 - Visible
Progress to date

• What we found
 – O-B and O-A histograms are Gaussian, no bias after assimilation and standard deviation of O-A less than that of O-B for all wind types.
 – Analysis increments: Greater adjustments on u-component wind
Progress to date

• What we found
 – O-B and O-A histograms are Gaussian, no bias after assimilation and standard deviation of O-A less than that of O-B for all wind types.
 – Analysis increments : Greater adjustments on u-component wind
 – Analysis - Analysis : Greater adjustments on u-component wind
Progress to date

• What we found
 – O-B and O-A histograms are Gaussian, no bias after assimilation and standard deviation of O-A less than that of O-B for all wind types.
 – Analysis increments: Greater adjustments on u-component wind
 – Analysis - Analysis: Greater adjustments on u-component wind
 – RMS of 240, 245, 246 and 251 winds are much smaller compared to raw windsonde.
Comparison of fits of AMVs to rawinsondes

IR-245

SWIR -240

CAWV -247

CTWV-246

VIS-251
Progress to date

• What we found
 – O-B and O-A histograms are Gaussian, no bias after assimilation and standard deviation of O-A less than that of O-B for all wind types.
 – Analysis increments : Greater adjustments on u-component wind
 – Analysis - Analysis : Greater adjustments on u-component wind
 – RMS of 240, 245, 246 and 251 winds are much smaller compared to rawindsonde.
 – Visible winds (251) has a large amount of observations rejected due to PTC1 QC. The lower bound for PCT1 (PCT1<0.04) was removed and these observations were recovered.
Recover significant counts assimilated for Visible winds (251) when PCT1<0.04 check was removed.

Histogram of use observations against PCT1 for 2012-08-02 12z cycle
Task 2: Investigation of GOES-R AMVs use in HWRF is ongoing to determine appropriate quality control and observation error settings.

Transition HWRF to use the new hourly GOES-R like Infrared and Cloud Top Water Vapor AMVs.

Test adding new Shortwave, Visible and Clear Air Water Vapor AMVs.

Test adding AMVs available from rapid scan images (< hourly).

Task 2: Before implementation into operational HWRF, the AMV procedures will be tested with the selected set of cases to determine forecast skill impact.
Extra slides
Feb Mean U & V at 350 hPa

U (m/s) 350 hPa
Time Average
00z01feb2015 to 18z28feb2015

V (m/s) 350 hPa
Time Average
00z01feb2015 to 18z28feb2015

wve2 - wvc2 ave=0.0263047

wve2 - wvc2 ave=-0.00738774
Aug Mean U & V at 350 hPa

U (m/s) 350 hPa

Time Average
00z01aug2015 to 18z31aug2015

V (m/s) 350 hPa

Time Average
00z01aug2015 to 18z31aug2015

wve1 - wvc1 ave=0.00270459

wve1 - wvc1 ave=0.000161056
July Mean U & V at 350 hPA

U (m/s) 350 hPa

Time Average

00z01Jul2015 to 18z31Jul2015

V (m/s) 350 hPa

Time Average

00z01Jul2015 to 18z31Jul2015

wve1

wve1 - wvc1 ave=0.00968218

wve1 - wvc1 ave=0.00467656
Future Work

• Adjust quality control
 – Removing the pct1<0.04 check for 251 winds
 – Inflating the observational errors

• Review impact on storms
 – Ernesto 2012
 – Hector 2012

• Additional experiment assimilating only hourly infrared AMVs (245) and cloud top water vapor AMVs (246).

• Upgrade HWRF code to the 2016 operational version when it becomes available.
Problems/Concerns

- Timeline in meeting the milestones
- Sufficient storms to accumulate enough statistics
- Disk space