HIWPP Goals

• Accelerate NOAA/US global model development

• Hydrostatic model 3.1 sub-task goals:
 – Establish “advanced hydrostatic model” benchmark by which to measure performance of upcoming global non-hydrostatic models
 – Improve hydrostatic-scale medium-range forecast capability via advanced models and ensembles
 – Improve components (physics, DA) applicable also to non-hydrostatic models
Components of HIWPP Hydrostatic Model Methodology

• Development
 – Data assimilation
 – Ensemble forecasts
 – Physical parameterizations and hydrostatic models

• Verification and evaluation
 – Retrospective testing
 • Provides baseline skill for GFS, NAVGEM, FIM models
 • Modifications to parameterizations, DA, numerics
 • Multi-model ensembles (e.g., GFS and FIM) for possible NAEFS extensions
 – Quasi-real-time testing
 • Advanced higher-resolution deterministic runs
 • Experimental NAEFS and GEFS extensions (addition of ~10 members each from FIM and NAVGEM)
Ensemble forecasts for HIWPP hydrostatic models/ensembles

• Experimental extension to NAEFS
 – Add ~10 members each of FIM and NAVGEM at highest resolution possible to GEFS/NCEP (and CMC)
 – Can value be added to current NAEFS (GEFS + CMC)?
 – Can value be added to GEFS with multi-model approach (with FIM replacing some GEFS members at same CPU cost)?

• High-resolution mini-ensemble from HIWPP deterministic models
 – ~3-member ensemble at up to ~15km resolution – GFS, FIM, NAVGEM
 – Is value added with this mini-ensemble?
HIWPP 3.1 – hydrostatic modeling - components

- 3.1.1 - assimilation/ensembles/stochastic physics
 - Jeff Whitaker and Tom Hamill
- 3.1.2 - parameterization development
 - Georg Grell and Tom Hamill
- 3.1.3 - GFS and global ensemble/NAEFS
 - Yuejian Zhu
- 3.1.4 – FIM
 - Stan Benjamin
- 3.1.5 - Navy
 - Melinda Peng and Tim Whitcomb
HIWPP hydrostatic global model contributors

<table>
<thead>
<tr>
<th></th>
<th>Horizontal resolution</th>
<th>Lab</th>
<th>physics</th>
<th>Vertical grid</th>
<th>Horizontal representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFS</td>
<td>T1534, 13km</td>
<td>NCEP/EMC</td>
<td>GFS physics</td>
<td>Sigma</td>
<td>spectral</td>
</tr>
<tr>
<td>FIM</td>
<td>15km, 30km</td>
<td>ESRL</td>
<td>GFS physics</td>
<td>ALE (hybrid isentropic-sigma)</td>
<td>icosahedral</td>
</tr>
<tr>
<td>NAVGEM</td>
<td>21km</td>
<td>NRL</td>
<td>NRL</td>
<td>Sigma</td>
<td>spectral</td>
</tr>
</tbody>
</table>
FIM numerical atmospheric model

- **Horizontal grid**
 - Icosahedral, $\Delta x=240\text{km}/120\text{km} / 60\text{km}/30\text{km}/15\text{km}/10\text{km}$

- **Vertical grid**
 - $p_{\text{top}} = 0.5 \text{ hPa}$, $\theta_{\text{top}} \sim 2200\text{K}$
 - **Generalized vertical coordinate**
 - Hybrid θ-σ option (64L, 38L, 21L options currently)
 - GFS-like σ-ρ option (64 levels)

- NEMS-compliant (part of FIM test suite applied to all commits)

- **Physics**
 - GFS physics suite: 2015 (incl. EDMF PBL), 2011 versions
 - Option for Grell-Freitas scale-aware deep/shallow cumulus
 - Option for other WRF parameterizations

- **Coupled model extensions**
 - Chem – WRF-chem/GOCART
 - Ocean – icosahedral HYCOM (no coupler), tri-polar HYCOM (with coupler)
May-Dec 2015

FIM-30km real-time vs. GFS operational – T1534
- FIM using GFS physics, GFS initial conditions.

0-9-day forecast – May-Dec 2015
95% significance bracket shown

500-hPa Height Anomaly Correlation
FIM-30km (GFS init, GFS phys) vs. GFS NCEP operational

Effect of alternative dynamic core (icosahedral, isentropic) from FIM
Wind RMS error vs. raobs
N. America
GFS (T1534) // FIM-30km
Both using 0.5 lat/lon

RMS errors (smaller better) - verification with rawinsonde observations
–Jan 2015 - Feb 2016

12h forecast
GFS // FIM

72h forecast
GFS // FIM
500 hPa anomaly correlation May – December 2015 vs. FIM30km with recommended T574 gravity wave drag parameters

Result from HIWPP FIM testing:

GSD tests for use of GFS physics
- Recommend using same gravity wave drag parameters at 30km (or T574) as used at 13-15km (T1534)

500 hPa anomaly correlation May – December 2015 vs. FIM30km with gravity wave drag

- FIM30km with T1534 GWD parameters
- GFS-T1534 operational
- FIM30km with T574 GWD parameters
GFS-FIM mixed-model ensemble testing – GSD (Isidora Jankov et al) collaboration with EMC (Yuejian Zhu et al)

1. Preliminary tests (May-Oct 2015)
2. FIM initial tests – used with problematic GWD parameters (at 40km resolution)
3. New FIM reruns now underway
4. GSD and EMC are planning to complete this study in 2016 to look at
 1. effect of alternative dynamic core
 2. Effect of alternative Grell-Freitas deep convection
Multi-model ensemble – FIM+GFS
500Z AC -0-16d – ens mean NH-SH – Jan-Dec 2014
- Skill of 10FIM(1-10)+10GFS(11-20)ens vs. 20GFS(1-20)ens
- Improvement from mixed-model ensemble in SH, little in NH.
ENSEMBLE verification

- Evaluation FIM contribution to global ensemble
- Evaluation of Continuous Ranked Probability Skill Scores (CRPSS) from GFS + FIM ensemble (Isidora Jankov and Scott Gregory)

- CRPSS background

Cumulative distribution function (CDF); used in CRPS

\[
CRPSS = 1 - \frac{\text{CRPS fcst}}{\text{CRPS ref}}
\]
CRPSS summer for T2m, T850 N-hem and S-hem

CRPSS Scores
North Hemi. summer

CRPSS Scores
South Hemi. summer
Spread and RMSE for T2m for NHM & SHM summer

NHM: GEFS characterized with stat. significantly smaller spread than GEFS+FIM for most of the lead times and stat. significantly higher error for earlier lead times.

SHM: comparable errors between the two ensembles and better spread for GEFS+FIM at longer lead times.
Major problem with warm/dry bias in GEFSp and GFS
Cited by SPC for recommendation against GEFSp implementation
But why does FIM (same 2015-GFS physics, same GFS init conditions including soil moisture/LSM, 30km) not show the same RH bias?

From Fanglin Yang’s ongoing GFS-FIM verification
http://www.emc.ncep.noaa.gov/gmb/wx24fy/fim/g2o/index.html
Water vapor mixing ratio (q) bias

- **12h** - FIM and GFS have same 12h dry bias after overnight 12h forecast.
- **18h** – now with daytime mixing, FIM is now showing the same dry bias in lowest ~1km.
- **24h** – FIM now has a slight moist bias but avoiding the strong GFS dry bias.

2m Td/RH difference is through the PBL Hypotheses:
- Vertical transport in FIM vs. GFS
- Cloud representation in different vertical stratification.
Same RH bias difference between GFS and FIM
18

Raob verification – 24h fcst valid 00z 15 June – 30 Aug 2015
- GFS – dry bias near ground
- FIM – little dry bias at ground
 - uses MODIS land-use
- FIM with GFS land-use
2m dewpt verification – 24h fcst valid 00z
15 June – 30 Aug 2015
- GFS – dewpoint not available
- FIM – little dry bias at ground
 - uses MODIS land-use
- FIM with GFS land-use
Key aspects of HIWPP advanced hydrostatic model testing

- **Participants**
 - NCEP – GFS
 - ESRL – FIM – alternative dycore, GFS physics, GFS IC
 - NRL – NAVGEMx – GFS IC

- **Results**
 - Controlled experiments with common GFS IC and GFS physics
 - FIM
 - improved wind RH forecasts improved over NCEP GFS
 - Improved 500z AC for N.Hemis for 6-10 day fcsts
 - Recommendations on gravity wave drag and MODIS land-use option
 - FIM+GFS mixed-model (10+10) ensemble testing – EMC/ESRL collaboration, continued testing and evaluation

- **Related NGGPS plans**
 - Similar retrospective experiments to attempt to match or exceed HIWPP advanced hydrostatic global model results
 - Extensive development of dycore(s), physical parameterizations, data assimilation