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1. Divergence damping

Horizontal divergence (along a Lagrangian surface) is computed as a cell-integrated
quantity on the dual grid:

(1) D =
1

∆Ac
[δx (uc∆yc sinα) + δy (vc∆xc sinα)]

(A complete list of variables is given at the end of the document.) The Laplacian of
D can also be computed as a cell-integrated quantity on the dual grid:

(2) ∇2D =
1

∆Ac

[
δx

(
δxD

∆x
∆yc sinα

)
+ δy

(
δyD

∆y
∆xc sinα

)]
This operator can be applied on ∇2D instead of D to yield ∇4D. The damping is
then applied when the forward timestep is taken for the horizontal dynamics along
vertically-Lagrangian surfaces:

un+1 = un + · · ·+ νD
δx∇2ND

∆x
(3)

vn+1 = vn + · · ·+ νD
δy∇2ND

∆y
(4)

where N (equal to the namelist parameter nord) is 1 for fourth-order and 2 for
sixth-order damping. The nondimensional damping coefficient is given as

(5) νD = (d4∆Amin)N+1

in which d4 is the parameter d4 bg in the namelist, and ∆Amin is the global minimum
grid-cell area. It is recommended that this parameter be set to a value between 0.1
and 0.16, with instability likely for higher or lower values. Note that divergence
damping is necessary as there is no implicit damping on the divergence in FV3.
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2. Vorticity damping

Vertical vorticity is a cell-integrated quantity on the model grid. The vorticity fluxes
vζ/∆x and −uζ/∆y are used to update the vector-invariant momentum equations.
We can apply damping on the vorticity as well; to maintain consistent advection,
the same damping is applied to the mass, heat, and vertical momentum fields, all
of which are co-located with the vorticity. This additional damping is beneficial
when using a non-monotonic advection scheme, which lacks the implicit diffusion of
monotonic advection.

The diffusion computed for each variable is computed as diffusive fluxes. Second-
order damped vorticity is computed as:

fx2 =
δxζ

∆xc
sinα∆y(6)

fy2 =
δyζ

∆yc
sinα∆x(7)

Again, higher order damping can be achieved by repeatedly applying the Laplacian
operator. To get a fourth-order damping (fx4 and fy4), apply the above operation
on the diffused vorticity:

(8) ζ2 = − 1

∆A
[δxfx2 + δyfy2]

Sixth-order damping can be achieved by performing another iteration to find ζ4 and
fx6, fy6. The forward timestep for the momentum is then evaluated as:

un+1 = un + · · ·+ νζ
fy(2N)

∆x
(9)

vn+1 = vn + · · · − νζ
fx(2N)

∆y
(10)

where the nondimensional damping coefficient νζ is evaluated the same way as νD,
but in which the namelist parameter vtdm4 is used for d4. This damping coefficient
should be much smaller than that for divergence, since even in a non-monotonic
advection scheme, the upstream numerics still has some implicit diffusion, whereas
divergence is not explicitly advected.

3. Energy-, momentum-, and mass-conserving 2∆z filter

FV3 has the option to use a local, vertical mixing to help remove dynamic instabilities
during the simulation. This is similar to the Richardson-number based subgrid-scale
diffusion formulations of Lilly (1962, Tellus) and of Smagorinsky (1963), although



their isotropic formulations have been simplified so as to only act on vertical gradi-
ents and perform diffusion in the vertical. This diffusion is completely local (2∆z),
diagnosing and acting only on adjacent grid cells.

We compute the local Richardson number on cell interfaces; recall in FV3 that k = 1
is the top layer of the domain and the index increases downward:

(11) Rik− 1
2

=
gδz δzθv

(θkv + θk−1
v )((δzu)2 + (δzv)2)

If Ri < 1, then mixing is performed. The amount of mass transfer between the layers
if there is complete mixing is:

(12) M0 =
δpkδpk−1

δpk + δpk−1

Here, we scale the amount of mixing so that the mass transferred isM = M0 (1− Ri)2.
Complete mixing is performed when Ri ≤ 0. A timescale τ , equal to the parameter
fv sg adj, for this mixing is applied so that the rate at which the mixing occurs
can be controlled at run time. For any conserved variable φ (including tracer mass,
momentum, or total energy) the time tendency produced by the mixing is:

∂φ

∂t

k

= −M

δpk
(
φk − φk−1

) 1

τ
(13)

∂φ

∂t

k−1

= +
M

δpk
(
φk − φk−1

) 1

τ
(14)

Note that since total energy and momentum are both conserved, lost kinetic energy
automatically becomes heat.

The timescale τ must be larger than the physics timestep (dt atmos in the namelist)
to avoid suppressing resolved convective motions. In the 1

8

◦
NGGPS idealized tropical

cyclone test, τ = 1800 s, compared to a physics timestep of 75 s. In 1
4

◦
HiRAM

seasonal predictions τ = 3600, compared to the physics timestep of 600 s.

This mixing can be either applied throughout the domain, or only near the model
top, to remove instabilities caused by vertically-propagating waves near the top of
the domain. The namelist variable n sponge controls the number of levels at the top
of the domain to which the filter is applied; if it is equal to npz the filter is applied
everywhere.



4. Variables and notation

u, v D-grid winds

uc, vc C-grid winds, at the tn+ 1
2 timelevel.

δp Layer hydrostatic pressure thickness, proportional to mass
δz Layer geometric depth for nonhydrostatic solver
θv Virtual potential temperature

∆A, ∆x, ∆y D-grid cell areas and cell face lengths
∆Ac, ∆xc, ∆yc dual-grid cell areas and cell face lengths

α local angle between coordinate axes; π
2

for an orthogonal coordinate
k vertical index
n time index

The differencing notation used in this document follows that of Lin and Rood (1996,
1997) and of Lin (2004), in which the operator δxφ is defined as a centered-difference
operator:

(15) δxφi+1/2 = φi+1 − φi.
The indices on dependent variables are suppressed unless explicitly needed. Note
that this differs from the equivalent operator of Durran (1999, 2010) in that it lacks
the 1

∆x
term needed to complete the discrete derivative.


