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FV3 

• GFDL models


• AM4/CM4


• HiRAM


• CM2.5/2.6/3  

• CAM-FV3


• LASG


• GEOS-CHEM (coming soon!)


• GISS ModelE

• Scalable, flexible dynamical core capable of both hydrostatic and 
nonhydrostatic simulation


• Successor to latitude-longitude FV core in NASA GEOS, GFDL AM2.1, and 
CAM-FV



FV3 Design Philosophy

• Discretization should be guided by physical principles as much as possible


• Finite-volume, integrated form of conservation laws


• Upstream-biased fluxes


• Operators “reverse engineered” to achieve desired properties


• Computational efficiency is crucial. A fast model is a good model! 


• Solver should be built with vectorization and parallelism in mind


• Dynamics isn’t the whole story! Coupling to physics and the ocean is important.



Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme


• Lin and Rood (1997, QJ): FV shallow-water solver


• Lin (1997, QJ): FV Pressure Gradient Force


• Lin (2004, MWR): Vertically-Lagrangian discretization


• Putman and Lin (2007, JCP): Cubed-sphere advection 


• Harris and Lin (2013, MWR): Describes FV3 and grid nesting


• Lin (in prep): Nonhydrostatic dynamics
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Lin and Rood (1996, MWR) 
Flux-form advection scheme

• 2D scheme derived from 1D PPM operators


• Advective form inner operators f, g, allow elimination of leading-order 
deformation error


• Allows preservation of constant tracer field under nondivergent flow


• Flux-form outer operators F, G ensure mass conservation



Lin and Rood (1996, MWR) 
Flux-form advection scheme

• PPM operators are upwind biased


• More physical, but also more diffusive


• Monotonicity/positivity constraint: important (implicit) source of model 
diffusion and noise control 


• Also available: linear advection schemes with a selective filter to suppress 
2∆x noise. These can be useful in very high-res nonhydrostatic runs 


• Scheme maintains linear correlations between tracers when unlimited or 
when monotonicity constraint applied (not necessarily so for positivity)



1D Advection Test

Lin and Rood 1996, MWR
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Lin and Rood (1997, QJ) 
FV shallow-water solver

• Solves layer-averaged vector-
invariant equations


• δp is proportional to layer mass


• θ: not in SW solver but is in full 
3D Solver


• Forward-backward timestepping


• PGF evaluated backward with 
updated pressure and height

2. The Nested Grid Model126

a. Finite-Volume Dynamical Core and cubed-sphere grid127

The FV core is a hydrostatic, 3D dynamical core using the vertically-Lagrangian dis-128

cretization of L04 and the horizontal discretization of Lin and Rood (1996, 1997, hence-129

forth LR96 and LR97, respectively), using the cubed-sphere geometry of PL07 and Putman130

(2007). This solver discretizes a hydrostatic atmosphere into a number of vertical layers, each131

of which is then integrated by treating the pressure thickness and potential temperature as132

scalars. Each layer is advanced independently, except that the pressure gradient force is133

computed using the geopotential and the pressure at the interface of each layer (Lin 1997).134

The interface geopotential is the cumulative sum of the thickness of each underlying layer,135

counted from the surface elevation upwards, and the interface pressure is the cumulative136

sum of the pressure thickness of each overlying layer, counted from the constant-pressure137

top of the model domain downward. Vertical transport occurs implicitly from horizontal138

transport along Lagrangian surfaces. The layers are allowed to deform freely during the139

horizontal integration. To prevent the layers from becoming infinitesimally thin, and to ver-140

tically re-distribute mass, momentum, and energy, the layers are periodically remapped to141

a pre-defined Eulerian coordinate system.142

The governing equations in each horizontal layer are the vector-invariant equations:143
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where the prognostic variables are the hydrostatic pressure thickness �p of a layer bounded148

by two adjacent Lagrangian surfaces, which is proportional to the mass of the layer; the149

potential temperature �; and the vector wind V. Here, k̂ is the vertical unit vector. The150
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Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
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Lin and Rood (1997, QJ) 
FV shallow-water solver

• Discretization on D-grid, with C-grid 
winds used to compute fluxes


• D-grid winds interpolated to get C-
grid winds, which are stepped 
forward a half-step for an approx. to 
time-centered winds—a simplified 
Riemann solver


• Advantages of D-grid are 
preserved, and diffusion due to 
C-grid averaging is alleviated


• Two-grid discretization and  
time-centered fluxes avoid 
computational modes
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FV shallow-water solver: 
Time-stepping procedure

• Interpolate time tn D-grid winds to C-grid


• Advance C-grid winds by one-half timestep to time tn+1/2


• Used as approximation to time-averaged winds for time-averaged fluxes


• Use time-averaged air mass fluxes to update δp and θ to time tn+1


• Compute vorticity flux and KE gradient to update D-grid winds to time tn+1


• Use time tn+1 δp and θ to compute PGF to complete D-grid wind update



FV shallow-water solver: 
Vorticity flux

• Nonlinear vorticity flux term in 
momentum equation


• D-grid allows exact computation of 
absolute vorticity—no averaging!


• Advantages to this form not apparent 
in linear analyses



FV shallow-water solver: 
Vorticity flux

• Vorticity uses same flux as δp


• Consistent flux of mass and 
vorticity improves preservation of 
geostrophic balance.


• Consistent flux also means PV is 
advected as a scalar! 


• PV is thus conserved in adiabatic 
shallow-water flow.



FV shallow-water solver: 
Kinetic Energy Gradient

• Vector-invariant equations susceptible to Hollingsworth-Kallberg instability if 
KE gradient not consistent with vorticity flux


• Solution: use C-grid fluxes again to advect wind components, yielding an 
upstream-biased kinetic energy 

• Consistent advection again!



FV shallow-water: 
Polar vortex test

• Note how well strong PV 
gradients are maintained


• Vorticity isn’t just important for 
large-scale flow. Many 
mesoscale flows are also 
governed by vorticity too!
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Lin (1997, QJ) 
Finite-Volume Pressure Gradient Force

• Computed from Newton’s laws 
and Green’s Theorem


• The pressure force on one cell 
from its neighbor is equal and 
opposite to that exerted by the 
cell on its neighbor


• Momentum is conserved the 
same way finite-volume 
algorithms conserve mass



Lin (1997, QJ) 
Finite-Volume Pressure Gradient Force

• Errors lower, with much less 
noise, compared to a finite-
difference pressure gradient 
evaluation


• Linear line-integral evaluation 
used in example yields larger 
errors near model top


• Now using fourth-order 
scheme to evaluate line 
integrals

Finite-Difference method

Finite-Volume method



DCMIP 2012 
Resting atmosphere test

• DCMIP Test 2-0-0


• 15 years later: same great results!


• Compare to other DCMIP participants 
(links to DCMIP website): 
CAM-FV (lat-lon FV core) 
CAM-SE  
UKMO ENDGAME  
ICON IAP  
ICON MPI DWD  
MPAS

https://earthsystemcog.org/projects/dcmip-2012/cam-fv-full-results/test200
https://earthsystemcog.org/projects/dcmip-2012/cam-se_test_200
https://earthsystemcog.org/projects/dcmip-2012/endgame_test_2_0_0
https://earthsystemcog.org/projects/dcmip-2012/icon-iap/test-200-images
https://earthsystemcog.org/projects/dcmip-2012/icon-mpi-dwd/test_20x
https://earthsystemcog.org/projects/dcmip-2012/mpas-test-2-0-0


Development of the FV3 core

• Lin and Rood (1996, MWR): Flux-form advection scheme


• Lin and Rood (1997, QJ): FV shallow-water solver


• Lin (1997, QJ): FV Pressure Gradient Force


• Lin (2004, MWR): Vertically-Lagrangian discretization 

• Putman and Lin (2007, JCP): Cubed-sphere advection 


• Harris and Lin (2013, MWR): Describes FV3 and grid nesting


• Lin (in prep): Nonhydrostatic dynamics



Lin (2004, MWR) 
Vertically-Lagrangian Discretization

• Equations of motion are vertically integrated to yield a series of layers


• Each layer like shallow-water, except θ is active


• Layers deform freely while horizontal equations integrated


• Only cross-layer interaction here is through pressure force


• To perform vertical transport, and to avoid layers from becoming 
infinitesimally thin, we periodically remap to an Eulerian vertical coordinate



Vertical remapping

• Reconstructions by a cubic spline for remapping accuracy


• Implicit in vertical, so no message passing


• Remapping conserves mass, momentum, and geopotential 


• Option to apply an energy fixer


• Vertical remapping is computationally expensive, but only needs to be done a 
few times an hour, not every time step 

• As long as δp > 0, we retain stability. No vertical courant number limitation! 
This becomes critically important in nonhydrostatic simulations.



FV3 and the GFDL models

• Terrain following pressure coordinate: pk = ak + bkps


• Other coordinates possible: hybrid-z, hybrid-isentropic


• Divergence damping: fourth-order damping now standard, with a sixth-order 
option


• Hyperdiffusion on vorticity also available. Useful when using non-
monotonic schemes in very high-resolution nonhydrostatic simulations


• Physics coupling is time-split
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Putman and Lin (2007, JCP) 
Cubed-sphere advection

• Gnomonic cubed-sphere grid


• Coordinates are great circles


• Widest cell only √2 wider than 
narrowest


• More uniform than 
conformal, elliptic, or spring-
dynamics cubed spheres


• Tradeoff: coordinate is non-
orthogonal



Putman and Lin (2007, JCP) 
Non-orthogonal coordinate

• Gnomonic cubed-sphere is 
non-orthogonal


• Instead of using numerous 
metric terms, use covariant and 
contravariant winds


• Solution winds are covariant


• Advection is by 
contravariant winds


• KE is product of the two

�

D-grid winds

C-grid winds

Fluxes

Fig. 2. Geometry of the wind staggerings and fluxes for a cell on a non-orthogonal grid.
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Cubed-sphere edge handling

• Fluxes need to be the same across edges to preserve mass-conservation


• Gnomonic cubed sphere has ‘kink’ in coordinates at edge


• Currently getting edge values through two-sided linear extrapolation


• More sophisticated edge handling in progress
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Nonhydrostatic FV3

• FV3 does a great job for hydrostatic flows. How can we maintain the 
hydrostatic performance and still do a good job with nonhydrostatic 
dynamics??


• Introduce new prognostic variables: w and δz (height thickness of a layer). 
The pressure thickness is still hydrostatic pressure, and thereby mass


• Density is then easily computed:  
 
 

• Nonhydrostatic pressure is then diagnosed as a deviation (not small-
amplitude!) from the hydrostatic pressure.  
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Nonhydrostatic FV3

• FV3 does a great job for hydrostatic flows. How can we maintain the 
hydrostatic performance and still do a good job with nonhydrostatic 
dynamics??


• Introduce new prognostic variables: w and δz (height thickness of a layer). 
The pressure thickness is still hydrostatic pressure, and thereby mass


• Vertical velocity w is the cell-mean value. Remember that vorticity is also a 
cell-mean value.


• Helicity can be computed without averaging! 



FV3 nonhydrostatic solver: 
Time-stepping procedure

• Interpolate time tn D-grid winds to C-grid


• Advance C-grid winds by one-half timestep to time tn+1/2


• Use time-averaged air mass fluxes to update δp and θ, and to advect w and 
δz, to time tn+1


• Compute vorticity flux and KE gradient to update D-grid winds to time tn+1


• Solve nonhydrostatic terms for w and nonhydrostatic pressure 
perturbation using either a Riemann solver or a semi-implicit solver 

• Use time tn+1 δp, δz, and θ to compute PGF to complete D-grid wind update



Nonhydrostatic FV3: nonhydrostatic solvers

• Instead of using a time-split solver for the fast vertical waves, FV3 presents 
two solvers for the nonhydrostatic terms:


1. Exact Riemann solver: solves for the Riemann invariants along the 
gravity wave characteristic curves. Highly accurate!


2. Semi-implicit solver: solves a vertically-tridiagonal system for the sound 
waves. Diffusivity in semi-implicit solver works to damp sound waves.


• Most simulations do very well with the semi-implicit solver. For very high-
resolution simulations (∆x < 1 km) where the vertical Courant number is < 1, 
the Riemann solver may be more appropriate (and possibly faster).


• All FV3 simulations for NGGPS use the semi-implicit solver



FV3: Model design and model performance

• Scientific accuracy is very 
important. But performance 
considerations cannot be 
ignored


• FV3 originally designed for 90’s 
vector supercomputers: lots of 
concurrency with a minimum of 
copies and transposes.


• Shared-memory threading and 
distributed-memory 
decomposition work together—
not against one another!

State vectors (i,j,k) 
Horizontal decomposed 6*NX*NY with 
optimal shared-memory placing (1st 

touch principle)

SW-like layer-by-layer 
“private” arrays 

threading in (i,j) – 
OpenMP-loop over k

Non-hydrostatic solved in 
(i,k)(vertical dependency)  

OpenMP-loop over j

Pressure-gradient  
computation (i,j,k) 
openMP-loop over-k

Remapping (Lagrangian to  
Eulerian) in (i,k) 

openMP-loop over j



Stretched grid

• Deforms a global grid so that one face has a higher resolution than the others


• Conceptually straightforward: requires no changes to solver!



Stretched grid

• Smoothly deformed! Even continental-scale flows may see little effect from the 
refinement.


• Capable of extreme refinement (80x!!) for storm-scale simulations



Stretched grid

• Opposing face can become very coarse


• Scale-aware parameterizations? (Are these really so important?)



Grid nesting

• Simultaneous coupled, consistent 
global and regional solution. No 
waiting for a regional prediction!


• Different grids permit different 
parameterizations; doesn’t need a 
“compromise” or scale-aware 
physics for high-resolution region


• Very flexible! Currently only uses  
static nesting but moving nests are 
also possible



3:1 nested grid Large nest for RCMs Multiple nests

Telescoping nests 2:1 nested grid Nest in stretched grid



Nesting methodology: boundary conditions

• Simple interpolation BC


• Linearly interpolate all variables in time and space to fill nested-grid halo


• Traditionally, time interpolation requires the coarse grid to be advanced before the 
nested grid


• Concurrent nesting: integrate coarse and nested grids simultaneously by 
extrapolating coarse-grid data in time to create nested-grid BC


• For scalars: extrapolation is limited so that the BCs are positive-definite


• Nonhydrostatic nesting: use same solver to produce BCs for the (diagnosed) 
nonhydrostatic pressure perturbation. Treat w and δz as if they were the other 
variables



Nesting methodology: two-way update

• Simple averaged update 


• Cell average on scalars


• In-line average for winds, to 
conserve vorticity


• Averaging is more consistent 
with FV discretization than 
pointwise interpolation



Mass conservation two-way nesting

• Usually quite complicated: requires flux BCs, conserving updates, and 
precisely-aligned grids


• Update only winds and temperature; not δp or δz 


• Two-way nesting overspecifies solution anyway


• Very simple: works regardless of BC and grid alignment


★ δp is the vertical coordinate: need to remap the nested-grid data to the 
coarse-grid’s vertical coordinate


• Option: a “renormalization-conserving” means of updating tracers to the coarse 
grid while conserving tracer mass



Nonhydrostatic HiRAM

2013 Moore Outbreak


72-hour forecast

1.3 km nest 


