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F\/S

» Scalable, flexible dynamical core capable of both hydrostatic and
nonhydrostatic simulation

« Successor to latitude-longitude FV core in NASA GEOS, GFDL AM2.1, and
CAM-FV

- GFDL models - CAM-FV3
- AM4/CM4 - LASG
* HIRAM * GEOS-CHEM (coming soon!)

- CM2.5/2.6/3 - GISS ModelE



FV° Design Philosophy

* Discretization should be guided by physical principles as much as possible

* Finite-volume, integrated form of conservation laws

« Upstream-biased fluxes

« Operators “reverse engineered” to achieve desired properties

- Computational efficiency is crucial. A fast model is a good model!

- Solver should be built with vectorization and parallelism in mind

- Dynamics isn’t the whole story! Coupling to physics and the ocean is important.



Development of the FV° core

* Lin and Rood (1996, MWR): Flux-form advection scheme

 Lin and Rood (1997, QJ): FV shallow-water solver

 Lin (1997, QJ): FV Pressure Gradient Force

* Lin (2004, MWR): Vertically-Lagrangian discretization

* Putman and Lin (2007, JCP): Cubed-sphere advection

* Harris and Lin (2013, MWR): Describes FV? and grid nesting

* Lin (in prep): Nonhydrostatic dynamics
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_in and Rood (1996, MWR)

-lux-form advection scheme
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« 2D scheme derived from 1D PPM operators

* Advective form inner operators f, g, allow elimination of leading-order
deformation error

* Allows preservation of constant tracer field under nondivergent flow

* Flux-form outer operators F, G ensure mass conservation



_in and Rood (1996, MWR)

-lux-form advection scheme

- PPM operators are upwind biased

* More physical, but also more diffusive

» Monotonicity/positivity constraint: important (implicit) source of model
diffusion and noise control

« Also available: linear advection schemes with a selective filter to suppress
2AX noise. These can be useful in very high-res nonhydrostatic runs

« Scheme maintains linear correlations between tracers when unlimited or
when monotonicity constraint applied (not necessarily so for positivity)
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in and Rood (1997, QJ)
-\ shallow-water solver

* Solves layer-averaged vector- % LV (Vip) = 0
Invariant equations 96p0

Y +V - (VipO) = 0

* Op is proportional to layer mass
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* 0: not in SW solver but is in full
3D Solver

- Forward-backward timestepping

* PGF evaluated backward with
updated pressure and height

D-grid winds ==
Fluxes =—>
C-grid winds s

z



in and Rood (1997, QJ)
-\ shallow-water solver
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- Advantages of D-grid are
preserved, and diffusion due to
C-grid averaging is alleviated

- Two-grid discretization and
time-centered fluxes avoid D-grid winds =—>

Fluxes ===

computational modes C-grid winds =t




FV shallow-water solver:
Time-stepping procedure

- Interpolate time t" D-grid winds to C-grid
+ Advance C-grid winds by one-half timestep to time t"+1/2
» Used as approximation to time-averaged winds for time-averaged fluxes
- Use time-averaged air mass fluxes to update 6p and 6 to time t"*'
« Compute vorticity flux and KE gradient to update D-grid winds to time t"*1

« Use time t™! 6p and 6 to compute PGF to complete D-grid wind update



FV shallow-water solver:
Vorticity flux

» Nonlinear vorticity flux term in
momentum equation

- D-grid allows exact computation of
absolute vorticity—no averaging!

- Advantages to this form not apparent
In linear analyses




FV shallow-water solver:
Vorticity flux

» Vorticity uses same flux as 6p

- Consistent flux of mass and
vorticity improves preservation of
geostrophic balance.

« Consistent flux also means PV is
advected as a scalar!

PV Is thus conserved in adiabatic
shallow-water flow.




FV shallow-water solver:
Kinetic Energy Gradient

* Vector-invariant equations susceptible to Hollingsworth-Kallberg instability if
KE gradient not consistent with vorticity flux

+ Solution: use C-grid fluxes again to advect wind components, yielding an
upstream-biased kinetic energy

=1 {%(F", At; u") +Y(TF, At: v")} .

- Consistent advection again!



-\ shallow-water:
Polar vortex test

* Note how well strong PV
gradients are maintained

* Vorticity isn’t just important for
large-scale flow. Many
mesoscale flows are also
governed by vorticity too!
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Figure 10. Polar stereographic projection (from the equator to the north pole) of the potential vorticity contours
at DAY-24 in the ‘stratospheric vortex erosion’ test case at three different resolutions.
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|in (1997, QJ)
-inite-Volume Pressure Gradient Force

« Computed from Newton’s laws
and Green’s Theorem

* The pressure force on one cell
from its neighbor is equal and
opposite to that exerted by the
cell on its neighbor

« Momentum iIs conserved the

same way finite-volume 4 dw |
algorithms conserve mass (g;’ “g;) = - (ZF;, ZF;)
XF={ Pnds
C
du 2F,
5 = 8%y —8&/tany




|in (1997, QJ)

* Errors lower, with much less
noise, compared to a finite-
difference pressure gradient
evaluation

- Linear line-integral evaluation
used in example yields larger
errors near model top

- Now using fourth-order
scheme to evaluate line
integrals

SIGMA

SIGMA

-inite-Volume Pressure Gradient Force

Finite-Difference method
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Figure 6. Asin Fig. 5, but for the finite-volume method.



DCMIP 2012
Resting atmosphere test

- DCMIP Test 2-0-0

- 15 years later: same great results!

« Compare to other DCMIP participants
(links to DCMIP website):
CAM-FV (lat-lon FV core)
CAM-SE
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https://earthsystemcog.org/projects/dcmip-2012/cam-fv-full-results/test200
https://earthsystemcog.org/projects/dcmip-2012/cam-se_test_200
https://earthsystemcog.org/projects/dcmip-2012/endgame_test_2_0_0
https://earthsystemcog.org/projects/dcmip-2012/icon-iap/test-200-images
https://earthsystemcog.org/projects/dcmip-2012/icon-mpi-dwd/test_20x
https://earthsystemcog.org/projects/dcmip-2012/mpas-test-2-0-0
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Lin (2004, MWR)
Vertically-Lagrangian Discretization

* Equations of motion are vertically integrated to yield a series of layers

* Each layer like shallow-water, except 0 is active

- Layers deform freely while horizontal equations integrated

* Only cross-layer interaction here is through pressure force

 To perform vertical transport, and to avoid layers from becoming
infinitesimally thin, we periodically remap to an Eulerian vertical coordinate



Vertical remapping

* Reconstructions by a cubic spline for remapping accuracy
 Implicit in vertical, so no message passing

- Remapping conserves mass, momentum, and geopotential
+ Option to apply an energy fixer

 Vertical remapping is computationally expensive, but only needs to be done a
few times an hour, not every time step

« As long as 6p > 0, we retain stability. No vertical courant number limitation!
This becomes critically important in nonhydrostatic simulations.



F\/3 and the GFDL models

- Terrain following pressure coordinate: pk = ak + bkps

» Other coordinates possible: hybrid-z, hybrid-isentropic

 Divergence damping: fourth-order damping now standard, with a sixth-order
option

- Hyperdiffusion on vorticity also available. Useful when using non-
monotonic schemes in very high-resolution nonhydrostatic simulations

* Physics coupling is time-split
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Putman and Lin (2007, JC
Cubed-sphere advection

» Gnomonic cubed-sphere grid
- Coordinates are great circles

- Widest cell only /2 wider than
narrowest

* More uniform than
conformal, elliptic, or spring-
dynamics cubed spheres

* Tradeoff: coordinate is non-
orthogonal




Putman and Lin (2007, JCP)
Non-orthogonal coordinate

« Gnomonic cubed-sphere is
non-orthogonal

* Instead of using numerous
metric terms, use covariant and
contravariant winds

« Solution winds are covariant

» Advection is by D-grid winds ——>

. . Fluxes =—>
contravariant winds C-grid Windls =t

» KE is product of the two



Cubed-sphere edge handling

* Fluxes need to be the same across edges to preserve mass-conservation

« Gnomonic cubed sphere has ‘kink’ in coordinates at edge

 Currently getting edge values through two-sided linear extrapolation

- More sophisticated edge handling in progress
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Nonhydrostatic FV°

- FV3 does a great job for hydrostatic flows. How can we maintain the
hydrostatic performance and still do a good job with nonhydrostatic
dynamics??

* Introduce new prognostic variables: w and 6z (height thickness of a layer).
The pressure thickness is still hydrostatic pressure, and thereby mass

 Density is then easily computed:

_%_W_épAA op

PV T4V T g02AA oz

* Nonhydrostatic pressure is then diagnosed as a deviation (not small-
amplitude!) from the hydrostatic pressure.



Nonhydrostatic FV°

- FV3 does a great job for hydrostatic flows. How can we maintain the
hydrostatic performance and still do a good job with nonhydrostatic

dynamics??

* Introduce new prognostic variables: w and 6z (height thickness of a layer).
The pressure thickness is still hydrostatic pressure, and thereby mass

* Vertical velocity w is the cell-mean value. Remember that vorticity is also a
cell-mean value.

 Helicity can be computed without averaging!



FV3 nonhydrostatic solver:
Time-stepping procedure

- Interpolate time t" D-grid winds to C-grid
 Advance C-grid winds by one-half timestep to time t"+1/2

» Use time-averaged air mass fluxes to update 6p and 0, and to advect w and
8z, to time tn+]

« Compute vorticity flux and KE gradient to update D-grid winds to time t"*'

- Solve nonhydrostatic terms for w and nonhydrostatic pressure
perturbation using either a Riemann solver or a semi-implicit solver

+ Use time t™1 6p, 6z, and 6 to compute PGF to complete D-grid wind update



Nonhydrostatic FV3: nonhydrostatic solvers

* Instead of using a time-split solver for the fast vertical waves, FV3 presents
two solvers for the nonhydrostatic terms:

1. Exact Riemann solver: solves for the Riemann invariants along the
gravity wave characteristic curves. Highly accurate!

2. Semi-implicit solver: solves a vertically-tridiagonal system for the sound
waves. Diffusivity in semi-implicit solver works to damp sound waves.

* Most simulations do very well with the semi-implicit solver. For very high-
resolution simulations (Ax < 1 km) where the vertical Courant number is < 1,
the Riemann solver may be more appropriate (and possibly faster).

- All FV2 simulations for NGGPS use the semi-implicit solver



FV3: Model design and model performance

 Scientific accuracy is very State vectors (i,j,k)
: Horizontal decomposed 6*NX*NY with
|mpo.rtant. _BUt performance optimal shared-memory placing (1
considerations cannot be touch principle)
ignored

Pressure-gradient
computation (i,j,k)

MP-| -k
- FV3 originally designed for 90’s SW-like layer-by-layer openMi-toop over
“private” arrays

vector supercomputers: lots of threading in (i,j) -
concurrency with a minimum of OpeniP-loop over k
copies and transposes.

Non-hydrostatic solved in

- Shared-memory threading and (i,k)(vertical dependency)
distributed-memory OpenMP-loop over ]
decomposition work together— , ,
: ' Remapping (Lagrangian to
not against one another! Eulerian) in (i,k)

openMP-loop over j




Stretched grid

« Deforms a global grid so that one face has a higher resolution than the others

» Conceptually straightforward: requires no changes to solver!



Stretched grid

- Smoothly deformed! Even continental-scale flows may see little effect from the
refinement.

- Capable of extreme refinement (80x!!) for storm-scale simulations



Stretched grid

» Opposing face can become very coarse

- Scale-aware parameterizations? (Are these really so important?)



Grid nesting

- Simultaneous coupled, consistent
global and regional solution. No
waiting for a regional prediction!

- Different grids permit different
parameterizations; doesn’t need a
“compromise” or scale-aware
physics for high-resolution region

- Very flexible! Currently only uses
static nesting but moving nests are
also possible




3:1 nested grid
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Telescoping nests

Large nest for RCMs
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Nesting methodology: boundary conditions

- Simple interpolation BC
+ Linearly interpolate all variables in time and space to fill nested-grid halo

- Traditionally, time interpolation requires the coarse grid to be advanced before the
nested grid

- Concurrent nesting: integrate coarse and nested grids simultaneously by
extrapolating coarse-grid data in time to create nested-grid BC

 For scalars: extrapolation is limited so that the BCs are positive-definite

* Nonhydrostatic nesting: use same solver to produce BCs for the (diagnosed)
nonhydrostatic pressure perturbation. Treat w and 6z as if they were the other
variables



Nesting methodology: two-way update

» Simple averaged update

 Cell average on scalars

* In-line average for winds, to

conserve vorticity

* Averaging is more consistent
with FV discretization than
pointwise interpolation




Mass conservation two-way nesting

+ Usually quite complicated: requires flux BCs, conserving updates, and
precisely-aligned grids

- Update only winds and temperature; not ép or 6z

- Two-way nesting overspecifies solution anyway

* Very simple: works regardless of BC and grid alignment

% Op is the vertical coordinate: need to remap the nested-grid data to the
coarse-grid’s vertical coordinate

« Option: a “renormalization-conserving” means of updating tracers to the coarse
grid while conserving tracer mass



20-May-2013
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Nonhydrostatic HIRAM
2013 Moore Outbreak
/2-hour forecast
1.3 km nest



