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ABSTRACT

Accurate and stable numerical discretization of the equations for the nonhydrostatic atmosphere is re-

quired, for example, to resolve interactions between clouds and aerosols in the atmosphere. Here the authors

present a modification of the hydrostatic control-volume approach for solving the nonhydrostatic Euler

equations with a Lagrangian vertical coordinate. A scheme with low numerical diffusion is achieved by in-

troducing a low Mach number approximate Riemann solver (LMARS) for atmospheric flows. LMARS is a

flexible way to ensure stability for finite-volume numerical schemes in both Eulerian and vertical Lagrangian

configurations. This new approach is validated on test cases using a 2D (x–z) configuration.

1. Introduction

Most of the current global climate models are based

on equations that assume hydrostatic equilibrium. These

models resolve processes whose horizontal scale is sig-

nificantly larger than the vertical scale. However, if a

global model aims to resolve motions whose horizontal

and vertical scales are similar, the model must also in-

clude nonhydrostatic effects (Daley 1988). One diffi-

culty with the nonhydrostatic equations is that the fast

sound waves, generated by the model’s equations, can

travel in all directions, vertically and horizontally, and

thus, require special computational approaches (e.g.,

implicit methods; Skamarock and Klemp 1992) and/or

small time steps in explicit time stepping schemes.

Therefore, the main question is how to formulate an ef-

ficient numerical scheme for small-scale nonhydrostatic

models, which has the ability to correctly and stably

represent the important small atmospheric interactions at

the model’s resolution limits (Smolarkiewicz et al. 2001;

Skamarock and Klemp 2008).

A large number of hydrostatic and nonhydrostatic

models use pressure or pressure-based terrain-following

sigma or hybrid coordinates as the vertical coordinate

(Phillips 1956; Smagorinsky 1963; Kasahara 1974; Bates

et al. 1993; Miller and Pearce 1974; Miller and White

1984; Xue and Thorpe 1991; Juang 1992; Skamarock and

Klemp 2008). Laprise (1992) suggested that hydrostatic-

pressure coordinates could be used advantageously in

nonhydrostatic atmospheric models. Since the mass in

the layers between adjacent coordinate surfaces is pro-

portional to the increment in the vertical coordinate

across the layer, this coordinate is often referred to as

a mass coordinate. A ‘‘floating’’ mass coordinate, which

does not allow mass to flow across vertical layers, is
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called a vertical Lagrangian coordinate. A few hydro-

static climate models have been developed using this

formulation, including the National Center for Atmo-

spheric Research (NCAR) Community Atmosphere

Model (CAM) versions 4 and 5 (Neale et al. 2010) and

the National Oceanic and Atmospheric Administra-

tion (NOAA) Geophysical Fluid Dynamics Laboratory

(GFDL) models (Putman and Lin 2008; Donner et al.

2011) based on the finite-volume dynamical core by

Lin (2004). A major advantage of applying a vertical

Lagrangian coordinate is that the 3D motion can be

reformulated into pure horizontal 2D flow within the

floating Lagrangian layers, with the resulting system

closely resembling that of the shallow-water system (Lin

2004). Developing a nonhydrostatic model based on a

vertical Lagrangian coordinate could allow the dynam-

ics component of general circulation models (GCMs) to

switch between different representations with hydro-

static dynamics in some regions and nonhydrostatic

dynamics in other regions where higher resolution is

desired. Klemp et al. (2007) implemented a vertical mass

coordinate in a nonhydrostatic model. However, their

vertical mass coordinate was not implemented using

a Lagrangian formulation. The GFDL Finite-Volume

Cubed Sphere (GFDL FVcubed) model (Donner et al.

2011), which is based on a vertical Lagrangian coor-

dinate, has a nonhydrostatic option. However, an ex-

plicit divergence damping termwas required tomaintain

its stability. Numerical damping in atmospheric model-

ing in general, whether accomplished implicitly through

the numerical scheme or explicitly through the addition

of specific terms to the equations, should only be large

enough to maintain a smooth and stable integration.

In this paper we present the development of a 2D (x–z)

nonhydrostatic dynamical model based on the use of a

generalized Lagrangian vertical coordinate, which was

also adopted in the well-known Lin–Rood hydrostatic

dynamical core (Lin and Rood 1996, 1997; Lin 2004).

The multidimensional Flux-Form Semi-Lagrangian

(FFSL) Lin–Rood dynamical core simulates the conser-

vative, monotonic advection of the prognostic variables,

and uses a floating vertically Lagrangian finite-volume

(FV) representation of the model equations with a con-

servative remapping algorithm in the vertical direction.

The Lagrangian coordinate requires periodic remapping

to a reference grid in order to avoid severe deformation

of the vertical mesh, which would occur, for example, if

layers with overlapping interfaces develop. The hori-

zontal numerical algorithm of the Lin–Rood dynam-

ical core is based on a staggered C–D grid approach

(Arakawa and Lamb 1977). This FFSL FV algorithm

has been adopted in several atmospheric GCMs (e.g.,

CAM and GFDL).

The development of a global nonhydrostatic climate

model represents a computational challenge. However,

it has become feasible to embed nonhydrostatic regions

within a hydrostatic model (Yeh et al. 2002). While an

FV model formulation based on the flux form of the

equations is favorable for maintaining mass and mo-

mentum conservation whenmerging the hydrostatic and

nonhydrostatic regions, grid staggering in a C–D fashion

for the nonhydrostatic atmosphere may limit the ability

of the model to perform in a stable and accurate fashion

(Skamarock 2008; Ullrich et al. 2010; Whitehead et al.

2011).

Here, we explore the use of a vertically Lagrangian

nonhydrostatic model. The purpose of this exploration

is to ultimately be able to join hydrostatic and non-

hydrostatic formulations in an adaptive model as grid

resolution is decreased. Because a large number of

general circulation models currently use a Lagrangian

hydrostatic formulation, and our previous work ex-

plored adaptive grid techniques in a Lagrangian hy-

drostatic model (Jablonowski et al. 2006), it is more

straightforward and easy to do this using the Lagrangian

formulation in both models. This will hopefully lead

to the ability to seamlessly treat both hydrostatic and

nonhydrostatic regimes and allow adaptive mesh re-

finement using this framework. Here, we develop a

method for solving the 2D (x–z) nonhydrostatic equa-

tions in Cartesian geometry using a finite-volume ap-

proach based on an unstaggered grid together with

a generalized Lagrangian vertical coordinate.We do not

filter acoustic waves in order to minimize any added

numerical diffusion caused by filtering. Since the non-

hydrostatic equations are nonlinear, no analytical solu-

tion can be used to validate the accuracy of our results.

Thus, we also applied our scheme using an Eulerian

coordinate system to act as a reference for comparison

purposes.We test themethod based on both an Eulerian

and a Lagrangian formulation, using the 2D warm

bubble tests of Robert (1993) and propagating gravity

waves.

Several advantages of the current scheme are as

follows:

1) No divergence damping is needed.

2) The use of an unstaggered grid simplifies the numer-

ical representation of the advection equations.

3) We developed a fast method for evaluating the fluxes

using a new approximate Riemann solver for low

speed flow.

4) A Lagrangian vertical coordinate was introduced to

facilitate the switching between a Lagrangian hydro-

static and nonhydrostatic treatment, since the vari-

ables in both treatments share the same definition.
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This approach allows us to easily join the efficient

Lagrangian hydrostatic approach with the nonhydro-

static approach in the GCM.

Some advantages inherited from the finite-volume

framework as are follows:

5) Its built-in physical conservation laws.

6) It is free of Gibbs oscillations.

One disadvantage of our current scheme is that we

implement a vertically explicit scheme. In weather or

climate models where the ratio of horizontal to vertical

grid spacingmight be of order 10 to 100, it might bemore

efficient to implement a vertically implicit scheme in

order to allow for longer time steps. However, in this

work, in order to examine the numerical properties of

our nonstaggered, Riemann solver-based algorithm, we

kept the numerical treatments simple and applied them

to a problem with similar vertical and horizontal grid

spacing. We also do not use a limiter for the recon-

struction of the conservative variables profiles in order

to avoid the added diffusion when limiters are adopted.

This approach represents a first step toward a more

generally applicable formulation.

The paper is organized as follows: in section 2 we

present a 2D (x–z) version of the fully compressible

Euler equations. Section 3 introduces the numerical

technique for their solution. In section 4 the results of

the model tests are discussed. We have conducted some

quantitative analysis and discussions in section 5. Section 6

presents the conclusions.

2. Model equations

To be able to embed our nonhydrostatic model into

a hydrostatic model with a vertical Lagrangian co-

ordinate, we focus on developing the nonhydrostatic

model with a similar vertical coordinate. However, the

Eulerian vertical coordinate can also be used based on

a natural extension of the technique we introduce. Thus,

we also include some results using the nonhydrostatic

model with an Eulerian coordinate configuration. We

introduce the control equations using the vertical

Lagrangian coordinate in section 2a, and the equations

using the Eulerian coordinate in section 2b.

a. The finite-volume equations in a vertical
Lagrangian coordinate

1) THE NONHYDROSTATIC FORMULATION

The model equations are the fully compressible 2D

(x, z) Euler conservation equations in flux form with

a vertical Lagrangian coordinate. Because of the latter,

the model layers are material impenetrable surfaces

and the bottom surface is terrain following. This elimi-

nates the need for the vertical advection terms and ren-

ders the equations one-dimensional. Instead, vertical

transport is represented by the remapping mechanism.

The mass conservation law is written in the following

form:

›p

›t
1

›pu

›x
5 0, (1)

where p is interpreted as a pseudodensity, which is the

density multiplied by the vertical geopotential gradient

within the Lagrangian FV, and has the units of pressure.

Here u is the magnitude of the horizontal wind. Here p

is defined as

p5
›p*

›s
52rg

›z

›s
52r

›F

›s
, (2)

where r, g, F, and p* are the nonhydrostatic density,

gravity, geopotential, and hydrostatic pressure, re-

spectively, and s is a generalized vertical coordinate

which is the integer index of each of the layer interfaces,

numbered in the top-down direction. Thus, ›/›s denotes

the difference of the value of any parameter between

two Lagrangian layer interfaces.

The horizontal momentum equation is

›pu

›t
1

›

›x
(puu1C)52

›

›s

�
p
›F

›x

�
, (3)

where C is defined as the nonhydrostatic pressure p

multiplied by the vertical geopotential gradient:

C52p
›F

›s
. (4)

Since p is interpreted as a pseudodensity, the left-

hand side of Eq. (3) is consistent with the general 1D flux

form momentum equation.

The vertical momentum equation is

›pw

›t
1

›pwu

›x
5 g

›p0

›s
, (5)

where w is the vertical velocity, p0 5 p 2 p* is the de-

viation from the hydrostatic pressure, and ›p0/›s 5
›p/›s 2 p is the perturbation of the pressure from

hydrostatic balance between layers.

The first law of thermodynamics provides the con-

servation of the potential temperature equation:

›Q

›t
1

›Qu

›x
5 0, (6)

where Q5pu/pk0 , is a scaled pseudopotential tempera-

ture density with u the potential temperature, p0 is a
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constant reference pressure at the surface with p0 5
1000 hPa, and k is the ratio of the gas constant Rd and

the heat capacity at constant pressure cp for dry air.

In these equations, the variables p, pu, pw, andQ are

treated as prognostic variables. Two additional equa-

tions are needed to predict the full set of nonhydrostatic

variables, and we add equations for the geopotential F
and the nonhydrostatic pressure p. The geopotential

advection equation comes from the definition of the

vertical velocity in z coordinates:

›F

›t
1 u

›F

›x
5wg . (7)

The equation for the nonhydrostatic pressure is de-

rived from the equation of state:

p5

�
2

RdQ

›F/›s

�g
, (8)

where g 5 1/(1 2 k) Since the index s is numbered in

top-down direction, ›F/›s is negative.

Equations (1), (3), and (5)–(8) define our non-

hydrostatic system.

2) THE HYDROSTATIC FORMULATION

In the hydrostatic system the vertical velocity w is not

treated as a prognostic variable. Our system of equa-

tions is fully consistent with a hydrostatic system if we

add the assumption that p0 5 0 (i.e., p is simply the hy-

drostatic pressure p*). In addition, Eq. (5) is not used,

and the vertical velocity may be diagnostically derived

from Eq. (7). The pressure p* at the layer interfaces is

calculated by (for level index k . 1):

(pI*)k5 pk21/2* 5ptop* 1 �
n5k21

n51

pn , (9)

where (p
I*)k51

5 p
k51/2
* 5 ptop* is the pressure at the

model top. The layer mean pressure p* is calculated by

p*5

�
k
›pI*/›s

›pI*
k/›s

�g

(10)

and the equation of state [Eq. (8)] is modified to calcu-

late the geopotential:

›F

›s
52cpQ

›pI*
k/›s

›pI*/›s
. (11)

Equations (9), (10), and (11) are the auxiliary equa-

tions needed to calculate C and 2›(p›F/›x)/›s in Eq.

(3). Thus, Eqs. (1), (3), (6), (9), (10), and (11) complete

the hydrostatic system.

b. The finite-volume equations in an Eulerian
coordinate system

The layers in the Eulerian coordinate are stationary,

so that vertical fluxes across layer boundaries take place

at the layer interfaces. The prognostic variables in the

Eulerian coordinate are r, ru, rw, ~Q, with the scaled

potential temperature density ~Q5 ru/pk0, and the cor-

responding set of equations are as follows:

›r

›t
1

›ru

›x
1

›rw

›z
5 0, (12)

›ru

›t
1

›

›x
(ruu1p)1

›ruw

›z
5 0, (13)

›rw

›t
1

›rwu

›x
1

›

›z
(rww1 p0)5 0, (14)

›~Q

›t
1

›~Qu

›x
1
›~Qw

›z
5 0, (15)

p5 (Rd
~Q)g . (16)

Note that the position of the layers is prescribed, so

there is no equation for the geopotential.

3. Solution technique

In this section, we mainly discuss the discretization

technique using the vertical Lagrangian coordinate

configuration. The discretization using the Eulerian co-

ordinate system is analogous.

Our dynamical core consists of six equations

[Eqs. (1), (3), (5), (6), (7), and (8)] for six variables:Q5
(p, u,w,Q, p,F). SinceF is not a conservative variable,

Eq. (7) is updated using the advective form. We use the

flux form for the Eqs. (1), (3), (5), and (6), which has the

general form:

›R

›t
1

›F

›x
5

›S

›s
, (17)

where R5 (p, pu, pw, Q) is a vector of the p-weighted

variables, F5 (pu,puu1C,pwu,Qu) is the flux vector,

and S 5 (0, 2p›F/›x, gp0, 0) is a source vector. The use

of the equations in the flux form assures conservation of

mass, momentum, and potential temperature.

In our numerical representation of the model equa-

tions, we use an unstaggered grid and place the variables

p, pu, pw, Q, p, and ›F/›s at the center of the cell (the

A grid) so that they represent the volumemean values of

these variables. The volume mean values of u and w are

calculated as: u5 (pu)/p and w5 (pw)/p, respectively.

An upwind method for determining the flux is used.

The flux vector F is placed at the FV horizontal in-

terfaces and is split according to
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F5 (pbu1/2, (pu)bu1/21C1/2, (pw)bu1/2,Qbu1/2)

5Rbu1/21C1/21/2(0, 1, 0, 0) , (18)

with u1/2 as the interface velocity and the index b as an

upwind indicator: b 5 l, if u1/2 . 0, and the scalar ad-

vection terms are chosen from the left (l) side of the

interface; and b5 r, if u1/2 # 0, and the scalar advection

terms are chosen from the right (r) side of the interface.

Lin (2004) used a similar form to transport moisture in

a general circulation model, with the horizontal ve-

locity defined on the interface of the FV using a C–D

grid and achieved a second-order overall accuracy.

However, in a nonhydrostatic model, the vertical ve-

locity needs to be taken into account, and the expan-

sion of the staggered grid approach to three dimensions

in the treatment of vertical velocity is not intuitive. S. J.

Lin (2007, unpublished manuscript) used an A-grid to

treat the vertical velocity. However, the use of a stag-

gered grid for the horizontal velocity and an unstaggered

grid for the vertical velocity introduces an inconsistency.

Liou (2006) invented an Advection Upstream Split-

tingMethod (AUSM1-up) for accurate flux calculations

for all flow speeds. This method was also based on an up-

windmethod with the flux as presented in Eq. (18). Ullrich

et al. (2010) applied thismethod to a shallow-water model

and achieved third- and fourth-order accuracy.

However, to make the AUSM1-up method suitable

for all flow speeds (i.e., Mach number M ; 1 and M �
1), the calculation of the interface flux vector is rela-

tively complicated, and as a result, is computationally

intensive. For most atmospheric phenomena, the Mach

number is small (M � 1) and it is acceptable to assume

the acoustic speed is locally constant. Thus, in order to

achieve a computationally economic scheme, we in-

vented the Low Mach number Approximate Riemann

Solver (LMARS) to solve the system of equations [Eq.

(17)] in the work described here. In the following sec-

tions, we show that the LMARS method has a simple

form, which saves a substantial number of computa-

tional steps, but retains the accuracy of the AUSM1-up

method. Similar to the AUSM1-up method, the

LMARS consists of two steps. For the first step, the

interface velocity u1/2 and the pseudopressure C1/2 are

calculated by solving a Riemann problem. Note that in

the Eulerian coordinate the pseudopressure C1/2 is re-

placed by the real pressure p1/2. For the second step, the

fluxes are updated using Eq. (18). The Rb can be ac-

quired by any kind of interpolation scheme. As an

aside, the AUSM1-up method is slightly different in

that it does not calculate the interface velocity in the

first step but calculates the interface mass flux instead.

To achieve low diffusivity, we use a conservative

five-point central polynomial interpolation scheme. Here

we provide the expression of the interface values of h,

where h could be velocity, pseudodensity, or pseudo-

pressure, etc., at the cell i, where i could be either the

horizontal or vertical index:

hi21/252
1

20
hi221

9

20
hi211

47

60
hi 2

13

60
hi11 1

1

30
hi12 ,

(19)

hi11/25
1

30
hi222

13

60
hi211

47

60
hi 1

9

20
hi11 2

1

20
hi12 .

(20)

On the horizontal boundaries, we have 4 ‘‘ghost

cells,’’ which allow us to use the expression above for

boundary cells; however, we do not use ghost cells for

the vertical boundaries; thus, Eqs. (19) and (20) can-

not be applied at the boundaries. Here we use the top

boundary cells 1 and 2 as an example to describe the

top boundary condition; the two cells at the bottom

boundary can be treated analogously with reversing

the index number.

We should point out that the interpolated profile of h

by the polynomials is more stable when it is evaluated

near the middle of the cells (i.e., the third cell’s control-

volume interface values h2.5, h3.5 are evaluated using

cells 1 to 5). However, if the first cell’s control-volume

interface values h0.5, h1.5 are evaluated using cells 1 to 5,

unpredictable behavior might appear. On the other

hand, although a lower order of accuracy of the in-

terpolation scheme at the boundaries does not affect the

overall accuracy in the full domain, if cell 1 uses a uni-

form distribution of h, such that h0.5 5 h1 5 h1.5, the

numerical diffusionmight be too large and it might mask

or filter out the waves at the boundaries. Conservatively,

we use a central three-point interpolation for cell 2:

h1:55
1

3
h11

5

6
h22

1

6
h3 , (21)

h2:552
1

6
h11

5

6
h2 1

1

3
h3 , (22)

and a one-side interpolation for cell 1:

h0:55
3

2
h12

1

2
h2 , (23)

h1:55
1

2
h11

1

2
h2 . (24)

This treatment is not the least diffusive, but it is more

generally applicable.

We derive the LMARS for the vertical Lagrangian

coordinate in sections 3a and 3b, provide the calculation

2530 MONTHLY WEATHER REV IEW VOLUME 141



using LMARS for the Eulerian coordinate and some

tuning techniques in sections 3c and 3d. The boundary

conditions, time integration, and the remapping scheme

are discussed in sections 3e, 3f, and 3g.

a. Horizontal Riemann solver

To derive the interface flux vector F in the first step,

we need u1/2 and C1/2.

When evaluating the fluxes at each cell face, only one

flux vector at each cell face, namely, the vector of nor-

mal fluxes is needed. The vector of normal fluxes can be

obtained by evaluating the normal speed u1/2 and the

pseudopressureC1/2 using a local one-dimensional form

of the Euler equation. Equation (3) can be written in the

form of an advection-type equation, assuming a zero

right-hand side (rhs) for purely horizontal flow:

›u

›t
1 u

›u

›x
52

1

p

›C

›x
. (25)

Assuming a local isothermal condition, we used the

gas pressure equation in the form generally defined in

compressible flow (Laprise 1992):

dp

dt
1 a2r

›u

›x
5 0, (26)

where a5
ffiffiffiffiffiffiffiffiffiffi
gp/r

p
5

ffiffiffiffiffiffiffiffiffiffiffiffi
gC/p

p
is the Eulerian speed of

sound. Taking the total derivative of Eq. (4) and using

Eqs. (26) and (2) we have

›C

›t
1 u

›C

›x
52a2p

›u

›x
. (27)

Note that Eqs. (25) and (27) do not need to be solved

using the conservation form of the equations, since they

are only used for deriving an expression to calculate the

values of u1/2 andC1/2 on the interfaces of the FV cells in

the x direction. In general, these two equations can be

represented as

Ut 1AUx5 0, (28)

where U5

 
u1/2

C1/2

!
; and A5

0
@u1/2 1/p

a2p u1/2

1
A .

(29)

Solving this system, AU 5 lU, for its eigenvalues, we

find that l1,2 5 u1/2 7 a.

We assume that we have a discontinuity at the in-

terface of two FV cells, which comes from the inter-

polation of u and C in different FV cells. Using the

interpolation scheme given in Eqs. (19) and (20), we

define the pair of the variables u andC to the left of the

discontinuity as Ul 5 [ul, Cl], to the right of it as Ur 5
[ur,Cr], and at the interface asU5 [u1/2,C1/2]. Then we

use the Rankine–Hugoniot ‘‘jump’’ conditions (Hirsh

2007) to write the following:

l1(U2Ul)5A(U2Ul) and

l2(U2Ur)5A(U2Ur) . (30)

For l1 5 u1/2 2 a we have

0
@ u1/2 1/p

a2p u1/2

1
A u1/22 ul

C1/22Cl

!
5 (u1/22 a)

 
u1/22 ul

C1/22Cl

!

or C1/21pau1/25Cl 1paul

.

(31)

Similarly, for l2 5 u1/2 1 a:

0
@ u1/2 1/p

a2p u1/2

1
A u1/22 ur

C1/22Cr

!
5 (u1/21 a)

 
u1/22 ur

C1/22Cr

!

or C1/22pau1/25Cr 2paur

.

(32)

Rearranging Eqs. (31) and (32), we obtain the values

of velocity u and C at interfaces of the cells:

C1/25
1

2
(Cr 1Cl)2

pa

2
(ur 2 ul) , (33)

u1/25
1

2
(ur 1 ul)2

1

2pa
(Cr 2Cl) . (34)

The flux F is updated in the second step according to

Eq. (18).

b. Vertical Riemann solver

To fully solve the system of equations represented

by Eq. (17), we need to calculate the source vector S5
[0, 2(p›F/›x)1/2, gp

0
1/2, 0]. The source terms are discre-

tized in the vertical direction, and the discretization terms

2p›F/›x and gp0 are defined at the layer interfaces. Here,

the subscript ½ denotes to the value at the vertical layer

interfaces. Thus, we need to find the values of p01/2, w1/2,

andF1/2 at the vertical interfaces of the Lagrangian layers.

Although there is no vertical flux across the Lagrangian

coordinate, we can still create a Riemann problem to de-

rive an expression to calculate the values ofw1/2 and p
0
1/2 at

the vertical interfaces by performing the first step of

LMARS, so that F1/2 can be updated using Eq. (7).

Similar to the treatment for the horizontal flux eval-

uation, the local normal velocity and pressure at the

control-volume interface can be evaluated using the one-

dimensional Euler equations. We start by differentiating

the state equation in Eq. (8) along the time axis. Then,
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taking into account Eqs. (1) and (6), where, for pure

vertical flow, p and Q are both constant, we derive

›p

›t
5 grp

›w/›s

›m/›s
, (35)

where ›m/›s52r›z/›s. Using the definition p0 5 p2 p*,

we assume ›p*/›t 5 0. This is valid because mass is

conserved in each control volume, and we can write the

following:

›p0

›t
2C2›w/›s

›m/›s
5 0; or

›p0

›t
2C2›w

›m
5 0, (36)

where C5
ffiffiffiffiffiffiffiffi
grp

p
is the sound speed along the m axis in

the Lagrangian vertical coordinate. From Eqs. (1) and

(5) and considering only vertical movements, (›/›x5 0),

we obtain

›w

›t
2

›p0/›s
›m/›s

5 0; or
›w

›t
2

›p0

›m
5 0. (37)

Equations (36) and (37) will be used to solve the

Riemann problem at the interface of the Lagrangian

layers. Analogous to the horizontal case, we have

Ut 1AUm5 0, (38)

where U5

 
w

p0

!
; and A5

 
0 21

2C2 0

!
. (39)

As before, we find the eigenvalues: l1,2 5 7C. Also,

we assume that we have a discontinuity of w and p0 at
the interface of two Lagrangian layers, and we define

the pair of the variables w and p0 above the disconti-

nuity asUu 5 [wu, p
0
u], below it asUd 5 [wd, p

0
d], (where

u, d denote up and down), and at the interface as

Ud 5 [w1/2, p
0
1/2]. Then, the Rankine–Hugoniot condi-

tions are

l1(U2Uu)5A(U2Uu) and

l2(U2Ud)5A(U2Ud) . (40)

Equation (40) can be expanded for both eigenvalues

as  
0 21

2C2 0

! 
w2wu

p01/22 p0u

!
52C

 
w1/22wu

p01/22 p0u

!

or p01/22Cw1/25 p0u2Cwu
(41)

 
0 21

2C2 0

! 
w1/2 2wd

p01/2 2 p0d

!
5C

 
w1/22wd

p01/22 p0d

!

or p01/21Cw1/25 p0d 1Cwd . (42)

Rearranging Eqs. (41) and (42), we obtain

p01/25
1

2
(p0d 1 p0u)1

C

2
(wd2wu) , (43)

w1/2 5
1

2
(wd 1wu)1

1

2C
(p0d 2 p0u) . (44)

The overall stability is not sensitive to the represen-

tation of the horizontal velocity at the interface. The

simplest representation u1/2 5 (ud 1 uu)/2, is sufficient.

With u1/2 and w1/2, the geopotential F1/2 can be updated

using Eq. (7). These values can then be used to calculate

the source vector S.

c. The LMARS in Eulerian coordinate

The system of equations in the Eulerian coordinate is

›R

›t
1

›F

›x
1

›H

›z
5 0, (45)

where R5 (r, ru, rw, ~Q), F5 (ru, ruu1 p, rwu, ~Qu),

and H5 (rw, rwu, rww1 p0, ~Qw), with ~Q5 ru/pk0 . Sim-

ilar to the representation in the Lagrangian system, we

derive the left and right flux vectors as

F5Rbu1/21 p1/2(0, 1, 0, 0), (46)

H5Rcw1/21 p01/2(0, 0, 1, 0) , (47)

where

b5

(
l , if u1/2. 0

r , if u1/2# 0
and c5

(
d , if w1/2. 0

u , if w1/2# 0
.

(48)

The derivation of the LMARS is very similar to that

given in section 3a. Here we provide the result:

p1/2 5
1

2
( pr 1 pl)2

ra

2
(ur 2ul) , (49)

u1/25
1

2
(ur 1 ul)2

1

2ra
(pr 2 pl) , (50)

p01/25
1

2
(p0d 1 p0u)1

ra

2
(wd 2wu) , (51)

w1/25
1

2
(wd 1wu)1

1

2ra
(p0d2 p0u) . (52)

Although the system represented by Eqs. (17) and

(45) is only described in 2D, the extension of the solution

to multidimensions follows the standard procedure us-

ing directional splitting.
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d. The tuning of LMARS

Equations (33), (34), (43), (44), and (49)–(52) are

in similar form, if we denote ~p, ~r, ~u, and ~a as the

pressure/pseudopressure, density/pseudodensity, ve-

locity perpendicular to the flux interface, and speed of

sound, respectively. The equations for the velocity and

pressure at the flux interface can be expressed as

~p1/25
1

2
( ~pupwind1 ~pdownwind)1

~r~a

2
(~uupwind2 ~udownwind),

(53)

~u1/2 5
1

2
(~uupwind1 ~udownwind)1

1

2~r~a
( ~pupwind2 ~pdownwind).

(54)

The second terms on the right-hand side are associated

with implicit diffusion effects. This diffusion can be mini-

mized under conditions, which do not have strong vertical

convection and have continuous physical variables with

small perturbations, by introducing the following form:

~p1/25
1

2
( ~pupwind1 ~pdownwind)1b

~r~a

2
(~uupwind2 ~udownwind),

(55)

~u1/25
1

2
(~uupwind1 ~udownwind)1b

1

2~r~a
( ~pupwind2 ~pdownwind),

(56)

where b is a variable diffusion parameter, b # 1. Using

b5 1 provides stability for most situations, but introduces

more diffusion. Using a smaller value of b, we are able

to achieve smaller diffusion in the LMARS scheme, but

this should be tested on a case-by-case basis.

e. Boundary conditions

1) HORIZONTAL BOUNDARY CONDITIONS

Since all the prognostic variables are defined on an

unstaggered grid, we can apply standard boundary con-

ditions in the horizontal direction (the position of F is

vertically staggered, however, it is unstaggered in the hori-

zontal direction). In the bubble tests shown in section 4,

a reflective boundary condition is applied by mirroring the

ghost cells. The ghost cells are extra grid cells on the

boundaries used for the interpolation of the variables.

In the gravity wave test shown in section 4, a periodic

boundary condition is applied.

2) VERTICAL BOUNDARY CONDITIONS

In the vertical Lagrangian coordinate, the top/bottom

boundary conditions are derived from the Eqs. (41) and

(42). At the bottom of the model we adopt a reflective

surface by setting

w5 0, (57)

p05 p0u 2Cwu . (58)

At the top of the model, we have two options: either

a ‘‘rigid lid’’ condition or an ‘‘open boundary’’ condition

to allow waves and disturbances originating within the

model domain to leave the domain without affecting the

interior solution.

For the rigid lid condition, we set reflective conditions

similar to the bottom boundary condition:

w5 0. (59)

p05 p0d 1Cwd , (60)

For the open boundary condition we set these as

w5wd . (61)

p05 p0d , (62)

Although we do not have any vertically oriented ghost

cells, however, using Eqs. (43)–(44) and (61)–(62) we

can derive that the upper and lower side values at the

boundary interface are identical, which has an effect

similar to that of building a ghost cell using the non-

reflective boundary condition.

The vertical boundary conditions in the Eulerian co-

ordinate are all set as reflective boundary conditions.

f. Time integration

The application of a two-step prediction-correction

time marching scheme with the conservative five-point

polynomial interpolation scheme, will lead to different

results if different time steps are used, because the two-

step prediction-correction time marching scheme is only

second-order accurate in time (unless very small time

steps are used). However, when paring the conservative

five-point polynomial interpolation scheme with a four-

step Runge–Kutta method, the choice of time step

would not affect the result as long as the CFL , 1 con-

dition is met. In two dimensions, the interface values

may be regarded as having been averaged along the

interface. The interface flux based on such an average,

though, is not the proper flux average along the in-

terface, because the flux is not a linear function of the

state quantities. So fourth-order accuracy is downgraded

to second-order accuracy. However, the higher-order

interpolation scheme does achieve low diffusivity of the

overall scheme so that we are able to observe small-scale

structures if we use a small grid size configuration.

We use a four-step Runge–Kutta method to integrate

the equation for the prognostic variables in time. In the
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nonhydrostatic Lagrangian version, the prognostic var-

iables areU5 (p, u, w,Q,F) [Eq. (7) is included, which

is not in flux form]. The prognostic variable vectors

in the Eulerian version and the hydrostatic version are

similar. The differential form of U is

dU

dt
5RHS(U) , (63)

where RHS stands for ‘‘right hand side’’ of the system of

differential Eqs. (1), (3), (5), (6), and (7), and these

functions are independent with variable of time . The

fourth-order in time four-step Runge–Kutta method is

U15U(t)1
Dt

2
RHS[U(t)] , (64)

U25U(t)1
Dt

2
3RHS(U1) , (65)

U35U(t)1Dt3RHS(U2) , (66)

U(t1Dt)5U(t)1
Dt

6
fRHS[U(t)]1 2RHS(U1)

1 2RHS(U2)1RHS(U3)g , (67)

where Dt is the time step. More standard four-step

Runge–Kutta methods are described in Durran (2010).

g. Vertical remap

When using the vertical Lagrangian coordinate, the

Lagrangian surfaces that bound an atmospheric layer

deform and need to be remapped onto the original co-

ordinates. The volume mean prognostic variables p, pu,

pw, and Q are remapped. Taking p as an example, our

procedure is as follows: 1) Integrate p in the top-down

direction to build a continuous profile. If we denote the

vertical integral to grid level k1 0.5 asmk10:5 5�k
i51pi,

with m0.5 5 0, then mk10.5 is defined at the layer in-

terface with vertical location represented by the geo-

potentialF5 gz, where z is the height. 2) The profile of

mk10.5 is acquired using a seven-point polynomial in-

terpolation scheme, with a Newton form polynomial

interpolation (Yang 2001), that is, to get m at location

Frefk10:5
[i.e., (mnewk10:5

,Frefk10:5
)], we use the following

inputs to the polynomial interpolation (mk22.5, Fk22.5),

(mk21.5, Fk21.5), (mk20.5, Fk20.5), (mk10.5, Fk10.5),

(mk11.5, Fk11.5), (mk12.5, Fk12.5), and (mk13.5, Fk13.5).

Near the top and bottom of the domain, the topmost

and bottommost seven points are used for the input

to the polynomial interpolation [i.e., (mnew1:5
,Fref1:5 ),

(mnew2:5
,Fref2:5 ), (mnew3:5

,Fref3:5 ) are all calculated using

the profile built by the points (m0.5, F0.5), (m1.5, F1.5),

(m2.5,F2.5), (m3.5,F3.5), (m4.5,F4.5), (m5.5,F5.5), (m6.5,F6.5)

using a polynomial interpolation]. 3) Using the profile

(mnewk10:5
,Frefk10:5

), the remapped p is calculated from

pnewk
5mnewk10:5

2mnewk20:5
. Steps 1 to 3 (mnewk10:5

,

Frefk10:5
) complete the remap for p. Since the values of

mk10.5 at the top and bottom remain unchanged during

the remapping process, the total mass Sp/g is auto-

matically conserved. Similarly, the total momentum is

also conserved (conservation of Spu and Spw), and no

extra heat is introduced into the system (conservation

of SQ). For simplicity, there is no limiting mechanism

used in step 2.

4. Tests and results

a. Robert’s warm bubble tests

We test our nonhydrostatic approach for solving the

equations for the 2D (x, z) nonhydrostatic atmosphere

using two standard tests from Robert (1993). These

tests are for two different types of warm bubbles: the

‘‘Gaussian’’ and ‘‘uniform’’ bubbles, which rise in an

isentropic atmosphere (303.15 K) within a closed box.

The Gaussian bubble is placed in a 1 km wide by 1.5-

km-high box and is represented by a perturbation of the

potential temperature of the following form:

u0 5

(
A , if r# a

Ae2(r2a)2/s2 , if r. a
, (68)

where r2 5 (x2 x0)
2 1 (z2 z0)

2 is the distance from the

bubble center, x0 5 500 m, z0 5 260 m, A 5 0.5 K, a 5
50 m, and s 5 100 m. The uniform bubble with a radius

of 250 m and with an initial 303.65 K ‘‘flat’’ potential

temperature was positioned at (x0, z0)5 (500, 260) m in

a 1 km by 1 km box.

1) EULERIAN FRAMEWORK VERSUS

LAGRANGIAN FRAMEWORK

Although the Lagrangian framework is useful in re-

ducing the 2D flow to 1D flow, and hence enhancing the

computational efficiency of the solution, it allows the

finite-volume cells to deform from their rectangular

shape, which will introduce some geometric errors when

the Lagrangian interfaces of the layers are significantly

distorted. Using the Eulerian framework avoids this

problem because the rectangular shape of the grid cells

is fixed. The LMARS solver can calculate fluxes in both

Lagrangian coordinates and Eulerian coordinates using

a similar framework, so the results in the Eulerian

framework can serve as the reference solution.

Figure 1 shows the potential temperature perturba-

tion in the experiments. The output times selected are

the same as those shown in Robert (1993). The first row
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shows the Gaussian bubble results from the Eulerian

configuration, while the second row shows the same

results from the Lagrangian configuration. The output

times for the Gaussian bubble results are 0, 6, 12, and

18 min. The last row shows the uniform bubble test, with

the left two subplots from the Eulerian configuration

while the right two are from the Lagrangian configura-

tion. The grid size for all the results was Dx5 Dz5 5 m,

and the time step Dt 5 0.007 s scales with the grid

spacing. The color range is presented from 0 to 0.5 K for

comparison purposes with the results shown by Robert

(1993). The output times for the uniform bubble results

are at 7 and 10 min. The AUSM1-up method was also

tested with the Eulerian configuration and shows almost

identical results (figures omitted), but requires about

50% more computer time compared to the LMARS

method.

Since no limiter is applied in either interpolation

scheme for the variables or remapping, two grid-size

waves can be observed. These waves do not grow or

cause instability. Figure 2 provides a clearer picture of

theses small-scale oscillations. It shows the cross section

at the center of the uniform bubble test for the 7-min

plot (the dashed line in the bottom-left plot in Fig. 1).

The oscillations are especially present near the sharp

edges of the rising uniform bubble.

In Fig. 1, the 6- and 12-min results for the two different

coordinate configurations agree well with each other

FIG. 1. (top two rows) The potential temperature (PT) (K) for a Gaussian bubble pertur-

bation in a 1 km by 1.5 km domain using (top) the Eulerian coordinate and (middle)) the

Lagrangian coordinate: (left to right) t 5 0–18 min. (bottom) An initial uniform bubble per-

turbation in a 1 km by 1 km domain using (left two panels) the Eulerian coordinate and (right

two panels) the Lagrangian coordinate: (from left to right) t5 7–10 min. The grid spacing of all

results is 5 m. The cross section of the PT perturbation along the dashed line in the bottom-left

panel is presented in Fig. 2.
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and with the corresponding solutions by Robert (1993).

However, at 18 min, the Kelvin–Helmholtz instability

starts to appear, and the results are different between

the two different schemes, especially for the shape of

the bubble head. Since we have not applied any diffusion

or limiters in our experiments, the numerical solutions

are only expected to agree at finite times and may di-

verge depending on the implicit damping and disper-

sion characteristics of the chosen algorithms. Similar

behavior is also found when comparing the results of

the uniform bubble: the general shapes of the uniform

bubbles are similar; however, the Kelvin–Helmholtz

instability is resolved differently between different schemes

at longer times. The bubble head and bubble’s width

show a slight difference between our results and those of

Robert (1993), which could be due to different appli-

cations of the reflective boundary conditions.

In this particular case, because the Eulerian frame-

work is able to maintain a rectangular shape for the

control volume at each time step, the fluxes are always

perpendicular to the control-volume interfaces. More-

over, we note that the error induced by the remapping

scheme is not included in the Eulerian framework.

Therefore, we consider the Eulerian version to be the

more accurate solution and use it as the reference below.

In section 5a, we also conducted a sensitivity test in which

we added strong viscosity to both the Lagrangian and

Eulerian formulations. With the addition of viscosity, the

results for both formulations converge at high resolution.

But at coarse resolution, the plots using the Eulerian

formulation are slightly closer to the high-resolution so-

lution. In general, if subgrid turbulence is added to a

model using a parameterization, both Eulerian and

Lagrangian frameworks should provide results that

converge. At shorter time scales, before any turbulence

develops in the Gaussian bubble tests (i.e., at 6 and

12 min) or for the results of the gravity wave tests in

the next section, the Eulerian and Lagrangian results

are similar. The difference between the Eulerian and

Lagrangian results without explicit diffusion, which re-

lated to the plots mentioned above are compared in

section 5c.

2) GRID SPACING VERSUS NUMERICAL DIFFUSION

We do not need to apply any diffusion such as di-

vergence damping to stabilize our numerical scheme

because our LMARS solver provides the necessary

stability. Since LMARS is applied in both the horizontal

and vertical directions, any implicit numerical diffusion

is consistent in all directions. As the diffusion is de-

termined by the difference of the pressure and velocities

at the interface of the FV cells, which are acquired by

interpolation, a high-order interpolation scheme will

lead to less diffusion.

The numerical diffusion is not a linear function of the

grid size. As a result, when the grid spacing is decreased,

FIG. 2. Cross section of the potential temperature perturbation (K) at x5 500 m of the uniform

bubble test after 7 min using the Eulerian coordinate.
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the result may not converge. Instead, numerical viscosity

will be decreased strongly and an ultra-low diffusive

result will be found. Figure 3 shows a plot at 18 min of

the Gaussian bubble using the Eulerian configuration

and the result of the uniform bubble at 7 min in the

Lagrangian configuration with a grid size of 10 and

2.5 m, respectively. The 10-m run is actually more dif-

fusive than the results of Robert (1993), however, the

2.5-m results are of high quality. With smaller grid size,

the smaller scale Kelvin–Helmholtz waves can be re-

solved in the Gaussian bubble. In addition, in the uni-

form bubble test, the discontinuity at the bubble edge is

very sharp.

These tests show that we are able to resolve the warm

bubble tests with small numerical diffusion using

a high-order interpolation scheme for the prognostic

variables and a small grid size. Although the amount of

numerical diffusion that can be tolerated in the solution

depends on the specific application, and for some ap-

plications, an economic computational performance is

preferred, we have shown that LMARS provides stable

solutions with a small amount of implicit numerical

diffusion. Our algorithm can be ‘‘downgraded’’ by using

a lower-order interpolation scheme for the prognostic

variables without any special treatment such as in-

troducing a divergence damping term for stability. An

implicit time marching scheme might also be used and

equipped with the LMARS numeric solver to filter out

acoustic waves and achieve a Courant–Friedrichs–Lewy

(CFL) number larger than one, but this technique will

FIG. 3. Plot of the Gaussian bubble at 18 min using (top) the Eulerian configuration and

(bottom) the result of the uniform bubble at 7 min in the Lagrangian configuration with a grid

size of (left) 10 and (right) 2.5 m.
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introduce additional diffusion into the solution. The

discussion of time-marching schemes is beyond the

scope of this work.

b. Gravity wave test

Figure 4 presents the results from a gravity wave test

using the vertical Lagrangian coordinate, Eulerian co-

ordinates, with the nonhydrostatic and hydrostatic

setups, which is very similar to the test case developed by

Skamarock and Klemp (1994). The vertical domain size

is 10 km and the horizontal domain size is 300 km. The

background atmosphere has a constant Brunt–V€ais€al€a

frequency of 1022 s21 with a surface temperature of

300 K, and the surface pressure is 105 Pa. The grid

spacings are Dx 5 Dz 5 1 km and the time step is 2 s.

The initial horizontal wind is 20 m s21 and a periodic

horizontal boundary condition is used. The waves are

excited by an initial u perturbation of the following

form:

u0 5Du0

sin
pz

H

11 (x2 xc)
2/a2

, (69)

where Du0 5 1022 K, H 5 10 km, a 5 5 km, and xc 5
100 km.

The original test published in Skamarock and Klemp

(1994) used a Boussinesq model and a rigid lid boundary

condition. A rigid lid boundary condition is used in the

test using the Eulerian coordinates. However, the way

we apply the hydrostatic approximation requires that

we use a free surface at the top of the model, so an open

boundary condition is applied in all Lagrangian coor-

dinate tests. Additionally, since the Coriolis force would

bring in one more equation for y, and this would break

the momentum conservation, we did not include this in

our test, and set the Coriolis parameter to zero. This is

different from the approach in Skamarock and Klemp

(1994). However, Giraldo andRestelli (2008) conducted

a similar test, without the Coriolis force, with the full

Euler equations. The perturbation potential tempera-

ture at t5 3000 s is shown in Fig. 4 for comparison with

the nonhydrostatic results of Giraldo and Restelli

(2008). Both the hydrostatic and the nonhydrostatic

simulations start from identical initial conditions.

Figure 4a is the potential temperature perturbation

using the nonhydrostatic configuration in the Eulerian

coordinates. This result is in good agreement with the

results of Giraldo and Restelli (2008) who used a local

spectral method. Our result is slightly more damping,

which may due to the fact that Giraldo and Restelli

(2008) used a 250-m resolution and 10th-order poly-

nomials. Figures 4b,c present the results of the non-

hydrostatic configuration in the vertical Lagrangian

coordinate. The remap frequency of the result in Fig. 4b

is every 60 s, while that in Fig. 4c is only remapped at the

end of the simulation. Figure 4d uses a hydrostatic

configuration with remapping every 60 s.

This test is dominated by the evolution of the gravity

wave. The horizontal background velocity of the fluid,

which is close to the gravity wave speed, is much greater

than the vertical velocity. So even with different bound-

ary conditions at the top of the model, there is no visible

deformation at the model top, and the reflection effect is

small. For the same reason, the FV vertical deforma-

tion is very small and the difference due to different

FIG. 4. The potential temperature perturbation (K) at t5 3000 s

in the gravity wave test. The configurations are (a) nonhydro-

static with Eulerian coordinates; (b) nonhydrostatic with vertical

Lagrangian coordinate and a remap frequency of 60 s; (c) as in (b),

but with only a single remap at the end of the simulation; and

(d) hydrostatic with vertical Lagrangian coordinates with 60-s

remap frequency. The contour interval is 0.0005 K, the bold line

is the 0 contour, the solid lines are positive, and dash–dotted lines are

negative. The grid spacing is dx 5 dz 5 1 km.
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remapping frequencies in this test is negligible. The only

differences are the zero-contour differences in the

middle of the domain. The model’s Eulerian version

does not involve remapping, so it is least diffusive.

However, since the model’s Lagrangian version trans-

lates the vertical motion into the finite-volume de-

formation, and it has no vertical flux terms to calculate,

it is more computationally efficient than the Eulerian

version.

Figure 4d is the gravity wave simulation using the

hydrostatic formulations in the vertical Lagrangian co-

ordinate. The same grid spacing and time step is used.

Since the hydrostatic formulations does not permit

vertical acoustic wave, the dispersive wave trains ob-

served in the nonhydrostatic model are not generated in

the hydrostatic mode.

5. Quantitative validation

a. Comparison of the Eulerian and Lagrangian
formulations with large viscosity for
the Gaussian warm bubble test

LMARS can be used in both the Eulerian and

Lagrangian frameworks. To demonstrate that both

methods converge to a similar result, we added a

second-order explicit damping term to the momentum

equation.

We repeated the rising Gaussian warm bubble test

from Robert (1993), with a strong diffusion term of the

form pK(uxx 1 uzz) and pK(wxx 1 wzz) added on the

right-hand side of the horizontal and vertical momen-

tum equations to represent the addition of a term with

large viscosity. The diffusion coefficient K was set to

a value of 75 m2 s21. We compared the results at dif-

ferent resolutions: dx 5 dz 5 5, 10, 20, and 40 m and at

the time t5 18 min. The vertical domain size is extended

to 1520 m when the grid spacing of 40 m is used. The

results are illustrated in Fig. 5.

Because the diffusion term changes the viscosity

of the air, the Kelvin–Helmholtz instability is not

observed.

The Eulerian and Lagrangian formulations started to

have converged results at a resolution of dx 5 dz 5
10 m.When the grid spacing increases, the quality of the

results is degraded in both the Eulerian and Lagrangian

versions. In particular, the Eulerian version maintains

‘‘smoother’’ results than does the Lagrangian version.

Thus, we judge that the Eulerian formulation produces

results that are in better agreement with the converged

solution at high resolution than is the Lagrangian ver-

sion. In our simulations, the results calculated using the

Eulerian formulation are used as the reference solution.

b. Order of accuracy analysis

The advection terms in our numerical scheme are

discretized using a fourth-order accurate method, and

the four-step Runge–Kutta method provides fourth-

order accuracy in time. Thus, the one-dimensional sim-

ulations are of fourth-order accuracy. In two-dimensional

simulations, however, the advection fluxes are based on

averaged values along the interface. Because the flux is

not a linear function of the state quantities, fourth-order

accuracy is downgraded to second-order accuracy.

However, the use of a high-order interpolation scheme

on the advection terms is able to ensure low diffusivity.

This section conducts several simulations to validate the

order of the accuracy of our numerical scheme.

1) 1D SIMULATION ERROR ANALYSIS

The full set of 1D compressible Euler equations per-

mits acoustic waves. A 1D (x) domain of 3-km length

with periodic boundary conditions is used to demon-

strate the errors inherent in our scheme. The back-

ground pressure is set to 13 105 Pa, and in order to keep

the acoustic speed at cs 5 300 m s21, the background

temperature is set to

T5
c2s
gRd

, (70)

where g is the adiabatic index, the ratio of specific heats

of the gas at constant pressure to the gas at a constant

volume (cp/cy), andRd is the gas constant for dry air. The

background density is calculated from

r5
p

RdT
. (71)

An initial temperature perturbation with a Gaussian

distribution is added to the background temperature to

initiate the acoustic waves:

T 0 5Ae2[(x2x
0
)2/s2] , (72)

where A 5 0.5 K, x0 5 1500 m, and s 5 100 m. The

acoustic waves will travel in both directions at the speed

of cs 5 300 m s21 after the wave is fully developed. The

result was sampled at t 5 48 s to evaluate the order of

accuracy of the numerical scheme. The grid spacing is

varied from dx5 dz5 5 to 40 m. The horizontal velocity

at t 5 48 s is shown in Fig. 6.

Since no analytical solution is available for this test,

we treat the result with the finest resolution as the ref-

erence, and compare the results from coarser resolutions

to this reference. To compare the results at different
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resolutions, the reference solution was averaged to the

coarser grids. Because finite-volume grids are used in

our simulation, each grid point corresponds to the av-

erage value of a grid cell of width of dx, and for each

coarsening step, since we doubled the grid spacing, we

averaged the reference results to compare to these

coarser resolutions (i.e., the result of cell size dx5 10 m

was compared to the averaged value of two grid cells

from the result with dx 5 5 m, etc.). The averaged ref-

erence result is aligned with the results from coarser

resolutions; the l2 norm error is calculated using the

difference between the results from the coarser resolu-

tion and the averaged reference result. The logarithm

plot of dx versus error is shown in Fig. 7a. The scattered

points are in good agreement with the solid line, which

has the slope of 4, so the one-dimensional test of our

scheme is approximately fourth-order accurate.

2) ERROR ANALYSIS WITH 2D EULERIAN

FORMULATION

We performed the rising bubble test using different

resolutions. TheGaussian bubble tests with the Eulerian

vertical coordinate were selected for the error analysis,

because the profiles of the perturbation are more con-

tinuous. The sampled results are taken at a finite time of

6 min. Similar to the 1D simulation error analysis, the

results from different resolutions using dx5 dz5 2.5, 5,

10, and 20 m were used, and the result from dx 5 dz 5
2.5 m were used as the reference result. Analogously to

the one-dimensional test, the results from dx 5 dz 5
2.5 m were averaged in order to compare them with

results at different resolutions.

The l2 norm error is calculated using differences be-

tween the averaged reference result and results using

FIG. 5. The rising Gaussian bubble test for (from left to right) different dx 5 dz resolutions simulated with (top) the Eulerian and

(bottom) Lagrangian approach. A second-order explicit diffusion term with the coefficient set to 75 m2 s21 is added to the system. The

domain of the simulation is 1 km by 1.5 km (The vertical domain size is 1.52 kmwhen the grid size of 40 m is used.) The contour interval is

0.1 K, and starts at 0.05 K.
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coarser resolutions. The logarithm plot of dx versus

error is shown in Fig. 7b. The scattered points are in

good agreement with the solid line, which has the slope

of 2, so we conclude our two-dimensional test is ap-

proximately second-order accurate.

3) ERROR ANALYSIS WITH VERTICAL

LAGRANGIAN COORDINATES AND REMAPPING

In the previous two sections we discussed the errors

and order of accuracy of our model using a simple hor-

izontal 1D and 2D Eulerian framework. In this section,

the 2D Lagrangian framework together with remapping

is examined. We used the gravity wave test described in

section 4b of the paper. This analysis allows us to ex-

amine the accuracy of the Lagrangian framework for the

transport of gravity waves. The gravity wave test with

the Lagrangian vertical coordinate and a remap fre-

quency of 60 s was selected for our error analysis. The

sampled results are taken at a 3000 s. Similar to the

warm bubble simulation error analysis, we used the re-

sult from the Lagrangian simulation at a resolution of

dx5 dz5 250 m as the reference. The reference result is

averaged to compare to the Lagrangian results at reso-

lutions of dx 5 dz 5 500, 1000, and 2000 m.

The logarithm plot of dx versus l2 error is shown in

Fig. 7c. The scattered points are in good agreement with

the solid line, which has the slope of 2, so we conclude

our two-dimensional tests using the vertical Lagrangian

coordinate and remapping is approximately second-

order accurate. Although the 1D simulation showed

fourth-order accuracy, in 2D simulations, we did not use

multiple points along the control-volume interfaces to

describe the nonlinear distribution of the fluxes, so our

scheme is downgraded to second-order accuracy. To

reach a fourth order, one can use Gaussian quadrature

points to calculate the interface fluxes (Ullrich et al.

2010).

c. Comparison of the Eulerian and Lagrangian
formulations without viscosity

If the physical processes to be resolved do not involve

the development of turbulence, the simulations of both

Eulerian and Lagrangian formulations produce similar

results. This is shown here by comparing the difference

between early-time results from the rising bubble test

FIG. 6. Horizontal velocity at t 5 48 s for the one-dimensional

acoustic wave test at varying resolutions.

FIG. 7. The l2 error analysis to determine

the order of accuracy of each of the schemes.

(a) 1D acoustic wave test after 48 s, (b) 2D

Gaussian bubble test with Eulerian vertical

coordinate after 6 min, and (c) 2D gravity

wave test with Lagrangian vertical co-

ordinate after 3000 s.
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described in section 4a of the paper and the gravity wave

test described in section 4b.

For the rising bubble test, we compare the plots of the

Gaussian bubble at t 5 6 and 12 min using a resolution

of 5 m. The value of the potential temperature pertur-

bation u0 is sampled along the central vertical line (i.e., at

x5 497.5 m). The plot of u0Eul, u
0
Lag, and abs(u0Lag 2 u0Eul)

is shown in Fig. 8.

The plot shows a slight shift between the Lagrangian

bubble and the Eulerian bubble. However, the shape of

the bubbles is almost identical as shown by the differ-

ence plot.

We conducted a similar examination of the gravity

wave test, using a remap frequency of every 60 s for the

Lagrangian formulation. The potential temperature is

sampled along the central horizontal line (at y5 5.5 km)

and at time t 5 3000 s. The results are illustrated in

Fig. 9.

Although theLagrangian result is slightlymore damped

than the Eulerian result, the potential temperature per-

turbations calculated by both formulations are almost

identical.

6. Conclusions

The finite-volume scheme using a vertical Lagrangian

coordinate has proven to be very useful in the GCM

modeling community and has been applied in both

the CAM and GFDL GCMs. Here, we used a similar

structure for the development of a nonhydrostatic dy-

namical core in 2D (x, z) Cartesian geometry.

In this work, we developed the equation sets for

a generalized vertical coordinate, and present these in

the nonhydrostatic Lagrangian and Eulerian form. We

also show their hydrostatic variant. The Arakawa-A

gridding is used in our approach to keep density, ve-

locities and temperature all volume mean variables.

With the A grid, the fluxes between the FVs or the

vertical movement of the Lagrangian layer interfaces

are calculated by Riemann solvers.

The Low Mach number Approximate Riemann

Solver is designed for atmospheric fluid motions, and is

extremely efficient when compared with the traditional

(approximate/exact) Riemann solvers. With the in-

troduction of LMARS, the numerical treatment of the

fluxes is decoupled from the governing equations. The

algorithm developer can chose variables or equations

based on the specific physical requirement without

changes to the numerical properties of the system.

No limiters or divergence damping are included in the

numerical algorithm. The treatment for the interpolation

and remapping are all based on polynomial interpolation.

All plots present the ‘‘pure’’ effect of LMARS, and the

two-grid-size wave does not grow or cause any instability.

In real applications however, limiters are desirable to

prevent negative values of density, pressure or tracers, like

water vapor mixing ratios. Also, a better remap scheme

will be required when simulating physical phenomena at

the boundaries of the domain. But both limiters and re-

mapping schemes cause extra diffusion in the numerical

system, which, however, do not introduce any instability

properties. In future studies, wewill introduce limiters and

an improved remapping scheme into our system.

LMARS is a flexible way to ensure stability for

finite-volume numerical schemes both in Eulerian and

FIG. 8. Potential temperature perturbation in the Gaussian

bubble test after (a) 6 and (b) 12 min sampled along the central

vertical line at x5 497.5 m. In the legend, diff means the difference

between the Eulerian and Lagrangian results (absolute value).

FIG. 9. Potential temperature perturbation in the gravity wave

test after 3000 s sampled along the horizontal line at x5 5.5 km. In

the legend, diff means the difference between the Eulerian and

Lagrangian results (absolute value).
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Lagrangian configurations. Of course for the simulations

of clouds in amodel, some formof explicit diffusion needs

to be added to parameterize the subgrid-scale turbulence.

However, with the built-in stabilizing mechanism in

LMARS, there is no need to add an explicit diffusion

term to the numerical scheme in for stability purpose.

The numerical diffusion of the scheme can be decreased

by using a high-order interpolation scheme or a smaller

grid size or by reducing the diffusion factor in the

LMARS scheme Although our approach utilizes the A

grid, the LMARS technique can also be used to provide

the FV cell interface velocities and pressure for the C

and D grids. As a result, it is possible to integrate this

method into the Lin–Rood scheme, which is applied in

many GCMs. However, taking this next step would also

entail exploring vertical implicit methods, which we have

not yet done. In the future, we will explore an appli-

cation that couples the nonhydrostatic regime and algo-

rithm to a hydrostatic regime using a vertical Lagrangian

coordinate.
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