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ABSTRACT

A nested-grid model is constructed using the Geophysical Fluid Dynamics Laboratory finite-volume dy-

namical core on the cubed sphere. The use of a global grid avoids the need for externally imposed lateral

boundary conditions, and the use of the same governing equations and discretization on the global and re-

gional domains prevents inconsistencies thatmay arise when these differ between grids. A simple interpolated

nested-grid boundary condition is used, and two-way updates use a finite-volume averaging method. Mass

conservation is achieved in two-way nesting by simply not updating the mass field.

Despite the simplicity of the nestingmethodology, the distortion of the large-scale flow by the nested grid is

such that the increase in global error norms is a factor of 2 or less in shallow-water test cases. The effect of

a nested grid in the tropics on the zonal means and eddy statistics of an idealized Held–Suarez climate in-

tegration is minor, and artifacts due to the nested grid are comparable to those at the edges of the cubed-

sphere grid and decrease with increasing resolution. The baroclinic wave train in a Jablonowski–Williamson

test case was preserved in a nested-grid simulation while finescale features were represented with greater

detail in the nested-grid region. The authors also found that lee vortices could propagate out of the nested

region and onto a coarse grid, which by itself could not produce vortices. Finally, the authors discuss how

concurrent integration of the nested and coarse grids can be significantly more efficient than when integrating

the two grids sequentially.

1. Introduction

Global models have many advantages for climate

simulation and medium-range weather prediction.

Global models do not need externally imposed lateral

boundary conditions (BCs), and so there are no issues

with boundary errors contaminating the solution, nor

inconsistency between the model dynamics and that of

the imposed BCs, two major problems for limited-area

models (Warner et al. 1997). Global models also allow

synoptic- and planetary-scale features to be better rep-

resented and to interact with any smaller-scale features

that may be resolved by the model. This scale interaction

is particularly important for studies of orographic drag

and deep convection on the general circulation, and in

forecasting hurricanes and other phenomena that feed

back onto their large-scale environment.

However, running a global model with uniform grid

spacing at scales needed to fully resolve these features is

still impractical using today’s computers. Regional cli-

mate models (RCMs; Giorgi andMearns 1999) typically

require years- or decades-long simulations resolving

phenomena only dozens of kilometers wide, and accurate

hurricane intensity forecasting may require resolving

features only a few kilometers wide.

A better solution would be to use a global model with

a locally refined grid, which would represent the large

scales globally, use the higher resolution only over the

area of interest, and allow the two scales to interact.

While any grid refinement will cause errors as distur-

bances propagate through the refined region, we expect

that having the refined and coarse regions in the same

* Current affiliation: NOAA/Geophysical Fluid Dynamics Lab-

oratory, Princeton University, Princeton, New Jersey.

Corresponding author address: Lucas Harris, NOAA/Geophysical

FluidDynamics Laboratory, PrincetonUniversity, Forrestal Campus,

201 Forrestal Road, Princeton, NJ 08540-6649.

E-mail: lucas.harris@noaa.gov

JANUARY 2013 HARR I S AND L IN 283

DOI: 10.1175/MWR-D-11-00201.1



model (complete with the same dynamics and discreti-

zation), and having the large-scale data continually sup-

plied to the refined region, would yield smaller boundary

errors than if a regional model were to be forced with

boundary data from an independent, noninteracting

global model. An approach often used in global models

is to use a stretched or deformed grid, in which a uniform-

resolution grid is transformed so there are more grid

points or cells over the region of interest. On the op-

posite side of the globe there are fewer grid cells and

thereby lower resolution, as depicted in Fig. 1, left and

middle panels. This capability already exists in several

models, including that described in this paper; see

Courtier and Geleyn (1988) and Fox-Rabinovitz et al.

(2006) for other examples. However, if the stretching

is so large that the grid size varies significantly, new

problems can occur. The time step of the entire grid will

be controlled by the smallest grid spacing in the refined

region, which increases the computational expense of

the simulation. Furthermore, since physical parameteri-

zations are often scale dependent, unless special param-

eterizations that adapt to the grid spacing are used, they

may only be appropriate for certain parts of the model

domain. Finally, the resolution on the side opposite to the

refined region may be so much more coarse than in the

rest of the domain that disturbances passing through

this region may no longer be well-enough resolved

to be represented accurately. The resulting errors can

propagate into the refined region if the simulation is

long enough.

A much less common approach for refining a global

model (but very common in limited-area modeling) is to

use a two-way nestedmodel (Fig. 1, right), with the global

domain acting as the coarse, ‘‘parent’’ grid and a regional

domain acting as the nested grid, with nested-grid BCs

periodically applied from the global grid. Both grids use

the same model dynamics and discretization, so the only

inconsistency arises from the different resolutions of

the two grids. Applying different time steps and physical

parameterizations between the two grids is trivial, and the

coarse grid domain need not be altered to allow nesting;

in particular grid nesting does not require a decrease in

global model resolution anywhere, and nests can be

placed at an arbitrary number of locations on the globe,

or even within one another. Two-way nesting allows for

the nested grid to influence the global grid by periodically

‘‘updating’’ or replacing the global solution by the nested-

grid solution where the grids coincide. Nested grids are

alsomore versatile than stretched grids, as any number of

nested grids can be used, grids can be nested within one

another, and nests can be rectangular instead of square.

Drawbacks of two-way nesting are that the grid boundary

is a discontinuous refinement and creates more localized

errors than does a gradual refinement (Vichnevetsky

1987; Long and Thuburn 2011, and references therein),

and that interaction between the refined and coarse

regions only occurs at defined intervals (although typ-

ically more frequently than the externally imposed BCs

for limited-area models), while for a stretched grid this

interaction occurs naturally at every time step.

The authors are aware of a few studies using two-way

global-to-regional nested models. Lorenz and Jacob

(2005) nested a regional gridpoint model in a spectral

global model for a 10-yr climate integration, in order to

better represent the topography of the Maritime Con-

tinent. Their results were promising—a global decrease

in zonally averaged temperature biases was observed in

the nested model compared to the single-grid global

model—but no further results were shown and no further

research using this model appears to exist. Inatsu and

FIG. 1. Methods for locally refining a global grid. (left) A stretched cubed-sphere grid, whose smallest face has been scaled by a factor of

3 in both directions. (middle) Reverse of stretched grid showing coarsest face, which covers more than half the sphere. (right) A nested

grid in an unstretched grid; the nest is a 3:1 refinement of the coarse grid. Thin lines represent local coordinate lines; heavy lines represent

cube edges and nested-grid boundaries.
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Kimoto (2009) found a result similar to, but less com-

pelling than, that of Lorenz and Jacob (2005), using

a similar nesting methodology with a nest over north-

east Asia. Chen et al. (2011) used a two-way nested

RCM that placed a nest over eastern China, using the

same gridpoint model for both the global and nested

grids. They found a local reduction in temperature bias,

but did not examine the effect of two-way nesting outside

of the nested region.

Dudhia and Bresch (2002) presented a test of global-

to-regional two-way nesting using the global version of

the fifth-generation Pennsylvania State University–

National Center for Atmospheric Research (PSU–

NCAR) Mesoscale Model (MM5) for a 3-day weather

forecast for North America. The 40-km grid-spacing

nested grid was able to resolve features that the 120-km

grid-spacing global domain could not, with an apparent

minimum of distortion at the nested-grid boundary.

Similar capability exists in the Weather Research and

Forecasting Model (WRF) (Richardson et al. 2007).

Transport Model 5 (TM5) (Krol et al. 2005) and the

Goddard Earth Observing System–Chemistry model

(GEOS-Chem; Bey et al. 2001) are both ‘‘offline’’ chem-

istry and transport models that can use two-way global-to-

regional nesting, but are not dynamicalmodels and rely on

reanalysis data or model output from other sources to

operate.

In this paper we present a two-way nested idealized

model using theGeophysical FluidDynamics Laboratory

finite-volume (FV) dynamical core (Lin 2004, hereafter

L04), discretized on the cubed-sphere geometry of

Putman and Lin (2007, hereafter PL07). This dynamical

core, henceforth the ‘‘FV core,’’ has been very successful

in a number of applications, including climate simulation

(Delworth et al. 2006; Zhao et al. 2009; Donner et al.

2011), weather prediction (Lin et al. 2004; Atlas et al.

2005), and seasonal hurricane prediction (Chen and Lin,

2011). Both the nested and coarse grids use the same FV

core so as to avoid errors thatmight arise as a result of the

use of different solvers on each grid. Any of a number of

schemes for the grid coupling can be used in our nested-

grid model, although we will show that favorable results

can be attained using simple, standardmethods, including

a straightforward method for conserving mass on the

global coarse grid.

The model will be tested using several common ide-

alized test cases. First, a series of standard shallow-water

test cases are performed to determine the impact of the

nested grid on the large-scale flows that characterize

these test cases. The first three-dimensional test case is

the baroclinic instability test case of Jablonowski and

Williamson (2006), which tests the ability of the nesting

to permit individual disturbances to pass into and out of

the nested-grid region and to yield a reasonable solution

on time scales of one to two weeks. Another is the ide-

alized climate integration of Held and Suarez (1994)

that tests the ability of the nested model to preserve the

climatology produced during a multiple-year integration.

A final test uses real topography and analyzed initial

conditions to demonstrate vortices shed in the lee of

the Big Island ofHawaii that are able to propagate onto

a coarse grid, which could not itself resolve the processes

generating the vortices. We also present a comparison

of the efficiency of the nested-grid model to uniform-

resolution simulations.

Section 2 describes the FV core, cubed-sphere grid

geometry, and the nesting methodology. Section 3 de-

scribes the results from the test cases. Section 4 con-

cludes the paper.

2. The nested-grid model

a. Finite-volume dynamical core and cubed-sphere
grid

The FV core is a hydrostatic, 3D dynamical core using

the vertically Lagrangian discretization of L04 and the

horizontal discretization of Lin and Rood (1996, 1997,

hereafter LR96 andLR97, respectively), using the cubed-

sphere geometry of PL07 and Putman (2007). This solver

discretizes a hydrostatic atmosphere into a number of

vertical layers, each of which is then integrated by

treating the pressure thickness and potential tempera-

ture as scalars. Each layer is advanced independently,

except that the pressure gradient force is computed us-

ing the geopotential and the pressure at the interface of

each layer (Lin 1997). The interface geopotential is the

cumulative sum of the thickness of each underlying

layer, counted from the surface elevation upward, and

the interface pressure is the cumulative sum of the pres-

sure thickness of each overlying layer, counted from the

constant-pressure top of the model domain downward.

Vertical transport occurs implicitly from horizontal

transport along Lagrangian surfaces. The layers are al-

lowed to deform freely during the horizontal integration.

To prevent the layers from becoming infinitesimally thin,

and to vertically redistribute mass, momentum, and en-

ergy, the layers are periodically remapped to a predefined

Eulerian coordinate system.

The governing equations in each horizontal layer are

the vector-invariant equations:

›dp

›t
1$ � (Vdp)5 0,

›dpQ

›t
1$ � (VdpQ)5 0,
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where the prognostic variables are the hydrostatic pres-

sure thickness dp of a layer bounded by two adjacent

Lagrangian surfaces, which is proportional to the mass

of the layer; the potential temperatureQ; and the vector

wind V. Here, k̂ is the vertical unit vector. The other

variables are diagnosed: the density r, kinetic energy

k5 (1/2)kVk, divergence D, pressure p, and absolute

vertical vorticity V. Finally, the prescribed higher-order

=4 divergence damping strength is given by n.

We use the gnomonic coordinate of PL07, in which

coordinate lines are great circles, to define our horizontal

discretization. This coordinate yields more uniformly

sized cells over the whole sphere, but is nonorthogonal.

As a result, the prognosed covariant wind components

u and y differ from the diagnosed contravariant wind

components ~u and ~y that are required for the transport

operator. DefineV5 ~uex 1 ~yey, where ex and ey are the

local unit vectors of the coordinate system. The co-

variant components of the wind are then u5V � ex and
y 5 V � ey, and the kinetic energy is k5 (1/2)(u~u1 y~y).

The angle a between the local unit vectors is given by

sina 5 kex 3 eyk; in an orthogonal coordinate system,

a 5 p/2.

The horizontal discretization is derived using a finite-

volume integration about a 2D quadrilateral grid cell

with area DA and over a time step of length Dt, with the

winds staggered on a D grid (Fig. 2). The discretized

equations are as in Putman (2007), modified for a non-

orthogonal coordinate system:

dpn115 dpn1F[fu*,Dt, dpy]1G[ey*,Dt, dpx] , (1)

Qn115
1

dpn11
fQndpn 1F[x*,Dt,Qy]1G[y*,Dt,Qx]g ,

(2)

un115 un 1Dt[Y(ey*,Dt,Vx)2 dx(k*2 n=2D)1bP x] ,

(3)

yn115 yn 1Dt[X(fu*,Dt,Vy)2 dy(k*2 n=2D)1 bP y] .

(4)

In these equations and for the remainder of the article

dp, Q, and other scalar variables are understood as cell-

averaged values, and winds and fluxes as face-averaged

values. The superscript n represents the time level of the

prognostic variables. The flux operators F, G, X, and Y

use the contravariant C-grid winds fu* and ey*, defined
at the n1 1/2 time level; for Q the airmass fluxes x*5
X(fu*,Dt, dp) and y*5Y(ey*,Dt, dp) are used. Airmass

fluxes would also be used for any tracer species, al-

though we do not use any in the simulations in this

paper. The difference operator is defined as dxh5
h[x1 (Dx/2)]2h[x2 (Dx/2)], and similarly for dy.

The fluxes through a cell face are denotedX(fu*,Dt,h)
and Y(ey*,Dt,h) for an arbitrary scalar h. The fluxes are

computed using the piecewise-parabolic method (PPM;

Colella and Woodward 1984) using the monotonicity

constraint of L04. The use of a monotonicity constraint

not only eliminates unphysical overshoots in the solution,

but also acts as a diffusive filter that is more physically

consistent than ad hoc scale-selective Laplacian diffusion

or hyperdiffusion operators. For the Williamson case-2

and -5 shallow-water tests described in sections 3a(1)

and 3a(2), we use the modified Suresh and Huynh (1997)

scheme described in PL07 without a monotonicity

constraint to facilitate comparison to other numerical

schemes that typically present convergence tests per-

formed without shape preservation.

The flux divergences (referred to as ‘‘outer operators’’

in PL07 and LR96) in each coordinate direction are

F[fu*,Dt,h]52
Dt

DA
dx[X(fu*,Dt,h)Dy sina]

G[ey*,Dt,h]52
Dt

DA
dy[Y(ey*,Dt,h)Dx sina]

for cell face lengths Dx, Dy, so that Dx sina is the length

of a cell face in the direction perpendicular to the flux

through that face. The angle a is computed locally, on

the cell face on which the flux is being computed. The

advective-form inner operators, denoted by a superscript

x or y, are

FIG. 2. Geometry of the wind staggerings and fluxes for a cell on

a nonorthogonal grid. The angle a is that between the covariant

and contravariant components; in orthogonal coordinates a 5 p/2.
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hx5
1

2

8><
>:h1

h1F[fu*,Dt,h]
11F[fu*,Dt, 1]

9>=
>;

hy5
1

2

8><
>:h1

h1G[ey*,Dt,h]
11G[ey*,Dt, 1]

9>=
>; .

Using the inner operators to produce a scalar field that

is then used in the outer operators in (1)–(4) produces

a spatially symmetric scheme that cancels the leading-

order splitting error (LR96, their section 2). Using

advective-form operators for the inner operator does

not affectmass conservation, since the outer operators are

still flux form, but allows the scheme to preserve an ini-

tially uniformmass field in a nondivergent flow and is thus

more physically consistent. The denominator of the sec-

ond term in the inner operators is a divergence-correction

term (PL07). For a particular variable, we use the same

computation for X and Y in both the inner and outer

operators, which avoids a potential instability (Lauritzen

2007) in the absence of a monotonicity constraint.

The transported kinetic energy k* is simply

1/2[X(fu*,Dt,u)1Y(ey*,Dt, y)]; using this form avoids

the Hollingsworth–Kåallberg instability (Hollingsworth

et al. 1983; LR97, p. 2481). The finite-volume absolute

vorticity and divergence are given by V and D, re-

spectively. Finally, the pressure gradient forces bP x andbP y are computed as in Lin (1997), by integrating around

a 2D plane in the vertical.

The time stepping (LR97) uses a forward–backward

procedure to advance the cell-averaged values and the

D-grid winds. First, the half-time-step C-grid windsfu*, ey* are computed using first-order vorticity and ki-

netic energy fluxes, and a pressure gradient force com-

puted usingmass and potential temperature advanced to

the half time step, also using first-order upwind fluxes.

The half-time-step mass and potential temperature are

then discarded. A similar procedure is performed to

advance the D-grid winds, mass, and potential temper-

ature a full time step, using the full PPM fluxes com-

puted with the half-time-step C-grid winds, and again

using a pressure gradient force computed with pressure

and temperature advanced to the n 1 1 time level.

In some cases the solution can be improved by relax-

ing the backward evaluation of the pressure gradient

force, and instead using a weighted average of that force

evaluated at time levels n and n 1 1. This is done by

setting a parameter b between 0, for which the pressure

gradient force is entirely that computed using pressure

and temperature at the n1 1 time level, and 1, for which

the pressure gradient force is entirely that computed

using pressure and temperature at the n time level. In the

x direction, the weighting would have the following form:

bP x5 (12b)bP x
n111bbP x

n . (5)

The use of nonzero b reduces the damping of high-

frequency gravity waves. Using b 5 0.4 was found to

improve some of the simulations in this paper. Unless

otherwise noted, in this paper we will use b 5 0.

Nearly any vertically monotonic quantity can be used

as the base for the Eulerian coordinate; here, we use

a 32-level hybrid s–p terrain-following vertical co-

ordinate (Chen and Lin 2011; Zhao et al. 2009), in which

for given constants ak, bk for each layer interface k 5
1, . . . ,N1 1 andN layers, the pressure at each Eulerian

layer interface is pk 5 ak 1 bkps for surface pressure

ps 5 pN11 5pT 1�N
k51dpk and pressure at the model top

pT 5 100 Pa; the new dpk in the kth layer is pk11 2 pk.

The resulting surface pressure is the same, and so this

procedure trivially conserves air mass. The remapping

of other variables is done using piecewise-parabolic

subgrid reconstructions in the Lagrangian layers, and

then analytically integrating these over each Eulerian

layer; full details are in L04. The vertical remapping

conserves mass and momentum; an option exists to

conserve total energy, although it is not used by the

simulations in this paper. Instead, vertical remapping is

applied to the temperature, a simpler procedure that

conserves geopotential. Remapping need not be ap-

plied at every dynamical time step, and indeed can be

applied once every hour or even less frequently.

b. Grid-nesting methodology

The nested grid is simply a refinement of one of the

faces of the gnomonic cubed sphere: for a refinement

ratio r each coarse-grid cell is split into r2 cells by di-

viding the great-circle arcs bounding each cell into r

equal segments. Our nested grids are aligned with the

coarse grid, making grid couplingmore accurate and less

complicated, but this does force the nested grid to remain

on one panel of the cubed-sphere grid. Table 1 gives the

positions and sizes of the nested grid in each nested

simulation performed in this paper.1

Many methods exist for nested-to-coarse-grid cou-

pling (cf. Zhang et al. 1986; Warner et al. 1997; Harris

and Durran 2010). However, we will show later that our

1 Table 1 shows the position of the nested grid’s ‘‘bottom left’’

corner in each cubed-sphere panel’s local coordinate system. Since

the coordinate system in each panel is not necessarily the same as in

any other panel, the bottom-left corner in a particular coordinate

system is not necessarily the true southwest corner.
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nested-grid model produces satisfactory solutions, while

using only simple nested-grid BCs and two-way updating

methods. Our boundary conditions are simply linearly

interpolated from the coarse-grid data, for all prognostic

variables (including the half-time-level C-gridwinds) into

the halo (ghost) cells of the nested grid.

Nested-grid models typically use what we will refer to

as ‘‘serial’’ nesting, in which each deeper level of nesting

is integrated after its parents on the same set of processes.

This process can be inefficient on parallel computers

when the nested grid requires much less computational

effort than its parent, which is particularly apparent in

a global-to-regional nested model where the nest may

only cover only a few percent of the global domain’s

area. We will instead use what we refer to as ‘‘con-

current’’ nesting, in which both the coarse and nested

grids are run simultaneously on different sets of pro-

cessors. Concurrent nesting allows us to choose the op-

timal number of processors (or more precisely, processor

cores) for each grid so that a balance can be achieved

between distributing a grid to as many processors as-

possible, and minimizing message passing and idle

processors. Since all grids will be at the same model

time, unlike in serial nesting, we linearly extrapolate

from two previous coarse-grid solutions to compute the

nested-grid BCs at each of the nested-grid’s time steps.

(In tests with serial nesting, the nested-grid BCs are

linearly interpolated in time.) An algorithm describing

the concurrent nesting process is given in the appendix

for a grid that may be a parent, nest, or both.

Mass-conserving two-way update methods do exist

(cf. Zhang et al. 1986; Kurihara et al. 1979; Berger and

Colella 1989), but these require computation of integrals

for the update and the use of interpolated fluxes at the

nested-grid boundary to correctly conserve mass. We

use a much simpler approach: since dp is themass of each

layer, we simply do not include it during the two-way

update. The coarse-grid pressure is undisturbed during

the update and mass is trivially conserved. However,

since dp also determines the vertical coordinate (even

after vertical remapping, since the surface pressure

gives the lowest coordinate surface) a consistent up-

date requires us to remap the other variables—u, y, and

Q—from the nested-grid to the coarse-grid coordinates,

using an appropriate extrapolation if the nested-grid

surface pressure is less than the coarse-grid surface

pressure. Since two-way updating already overspecifies

the coarse-grid solution, and since pressure is tightly

coupled to the other variables, we expect that not up-

dating dp will not substantially degrade the coarse-grid

solution. All simulations described in this paper will

use this ‘‘mass-conserving remapping update,’’ and are

all observed to conserve mass on the coarse-grid to

machine precision. Since the horizontal discretization

of the FV core does not exactly conserve momentum or

total energy we make no attempt to do so in our nesting

methodology. Conservation of microphysical species

or tracer mass is outside the scope of this study.

Two-way updating is done using temperature T5
Q(p/p0)

R/cp , where R is the gas constant, cp is the specific

heat at constant pressure, and p0 is a constant reference

pressure, instead of Q. Updating T was found to yield

fewer grid artifacts, likely because unlikeQ it is not a direct

function of pressure. The update is a simple areal average

with each cell weighted equally: the updated coarse-grid

cell-averaged temperature is the average of that of the r2

corresponding nested-grid cells it is split into. For the

winds, we perform a piecewise-constant finite-volume

average of the r nested-grid-cell faces along the coarse-

grid face whose D-grid wind is being updated. This av-

eraging update is more consistent with our finite-volume

discretization than a simple pointwise average would, and

the use of piecewise-constant finite-volume averages for

the winds means that the update conserves vorticity.

While the nested model can use any integer value for

the refinement ratio r, we will use a factor of 3, unless

otherwise noted.

TABLE 1. Locations and sizes of nested grids. The coarse-grid

grid positions of the nested grid’s bottom-left corner I0 and J0 are

defined in the appendix; note that these are in terms of the local

coordinate system on the cubed-sphere panel in which the nested

grid lies and need not correspond to the ‘‘southwest’’ corner of the

grid. Latitude is given in 8N and longitude is given in 8E, both
rounded to the nearest tenth of a degree. The abbreviations ‘‘JW’’

and ‘‘HS’’ stand for the Jablonowski–Williamson and the Held–

Suarez test cases, respectively.

Test case

Grid

spacing

Corner of nested grid

Nest sizeLat, lon (I0, J0)

Case 2 c24 (15.88N, 196.48E) (9, 9) 24 3 24

c36 (13, 13) 36 3 36

c48 (17, 17) 48 3 48

c60 (21, 21) 60 3 60

c90 (31, 31) 90 3 90

c180 (61, 61) 180 3 180

Case 5 c30 (51.78N, 142.68E) (5, 5) 60 3 60

c60 (9, 9) 120 3 120

c90 (13, 13) 180 3 180

c180 (25, 25) 360 3 360

Case 6 c48 (15.88N, 196.48E) (17, 17) 48 3 48

c180 (61, 61) 180 3 180

JW c60 (32.28N, 241.48E) (25, 9) 60 3 60

c90 (37, 13) 90 3 90

c180 (73, 25) 180 3 180

HS c48 (15.88N, 153.68E) (17, 17) 48 3 48

c90 (31, 31) 90 3 90

Vortex c120 (27.28N, 198.08E) (23, 96) 48 3 48

(24.48N, 198.08E) (27, 96)

(28.78N, 189.68E) (23, 85)

288 MONTHLY WEATHER REV IEW VOLUME 141



It has been noted (Oliger and Sundström 1978; Tribbia

and Temam 2011) that open boundary conditions for the

hydrostatic primitive equations, such as those applied at

our nested-grid boundary, are mathematically ill posed

and susceptible to grid-scale noise. We will see that the

amount of small-scale noise in our nested-grid simu-

lations is in fact quite small, which is likely due to a

combination of the implicit damping in our numerical

method, both in the horizontal transport and vertical

remapping, and the use of divergence damping. Indeed,

Temam and Tribbia (2003) found that a small amount of

numerical diffusion applied to the hydrostatic vertical

momentum equation resolved the ill posedness of open

boundaries and substantially reduced the amount of grid-

scale noise in their 2D simulations.

3. Test cases

a. Shallow-water tests

We present three tests of the shallow-water version of

the FV core that evaluate the nested model’s ability to

preserve the desirable large-scale characteristics of the

single-grid’s solution. Convergence tests are also per-

formed for two of these test cases; neither test case uses

a monotonicity constraint so the results can be more

easily compared against those found by other shallow-

water solvers. Convergence tests are performed using

a range of resolutions, from c24—in which each face of

the cubed sphere is spanned by 24 grid cells in both di-

rections, for a total of 63 2425 3456 cells over the entire

domain—to c180, representing a range of average grid

cell widths from 400 to 50 km, or from 48 to 0.58. Since
the features in these test cases are well-resolved even at

a coarse c36 resolution, we do not expect that the nested

grid can improve these simulations; indeed, since the

solutions are largely in geostrophic balance the discon-

tinuity created by the nested grid will cause greater er-

rors. A nested-grid simulation should instead keep the

increase in error to a minimum, and should not converge

more slowly than a single-grid simulation.

The FV core becomes a shallow-water model when

run with a single layer, a uniform potential temperature,

and with the assumption that there is no stress from an

overlying layer. Vertical remapping is unnecessary, and

when performing mass-conserving two-way updating u

and y are updated directly to the coarse grid.

1) BALANCED GEOSTROPHIC FLOW

Test case 2 ofWilliamson et al. (1992) is a flow initially

in geostrophic balance, so any deviations from the initial

condition are considered errors. This test is sensitive to

spatial changes in grid structure and in particular to the

abrupt refinement at the nested-grid boundary. We

present tests of the model using a c48 grid in which errors

are characterized as the difference between the analytic

initial condition and the solution at day 5. The simulation

uses an internal ‘‘large’’ time step of 30 min, identical on

both grids, corresponding to the interval between ver-

tical remappings in a three-dimensonal model and to the

interval between times used for the nested-grid BCs and

for performing two-way updates. The coarse grid uses

four ‘‘small’’ time steps per large time step, each corre-

sponding to Dt for one advance of the dynamics, so the

time step for the dynamics is 7.5 min. The simulations in

this section use fluxes computed by a modification of

Suresh and Huynh (1997) as in PL07, with no mono-

tonicity constraint. The nested grid (depicted by a quad-

rilateral in Fig. 3 and subsequent figures; see also Table 1)

is centered in one of the equatorial panels of the cubed

sphere, and is a refinement of the coarse grid by a factor

of 3 (r5 3). The nested grid uses 12 small time steps per

large time step. Two flows whose initial height fields

[equal to dp/g and sampled from the analytic initial con-

dition of Williamson et al. (1992)] are depicted in Fig. 3,

are used: one with a purely zonal flow and a more

FIG. 3. Initial height field for the shallow-water balanced geo-

strophic flow test (Williamson test case 2). Contour interval is

400 m. ‘‘Rotated’’ in (b) refers to the flow rotated 458 from zonal.

In this and all other figures gray curves indicate boundaries of the

cubed-sphere panels and of the nested grid, when present.
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stringent test with a flow field rotated 458 from zonal to

allow the strongest part of the flow to pass over the

corners of the cubed sphere and of the nested grid.

We compute the area-weighted error norms:

‘1 5
�(hA2hICA)

�(hICA)
‘25

�(hA2 hICA)2

�(hICA)2

‘‘ 5
max(hA2 hICA)2

max(hICA)2
, (6)

where h, hIC, and A are the height, initial height, and

area of each cell, respectively, and the sum and maxi-

mum are over all grid cells on the coarse grid. All error

norms are computed on the native cubed-sphere grid.

Note that hA is proportional to the mass in each grid

cell.

Even the largest ‘1 and ‘2 error norms (Table 2) in our

c48 simulations are still very small, with only one (the

nested-grid rotated flow simulation) being over one part

in 1000. The exception is the ‘‘ norm, which is dominated

by the nearly singular edges of the cubed sphere and so

does not decrease with grid spacing. The cubed-sphere

grid structure is apparent in the error field (Fig. 4). Im-

provement of the numerical scheme at the edges of the

cubed sphere is a topic for further research. Using grid

nesting in the zonal flow test cases only increased the

error norms by at most 20%. In the more stringent ro-

tated flow test case, the nested-grid simulation’s error

norms were double that of the single-grid simulation,

except for the ‘‘ norm, which is nearly identical in the two

simulations. Using serial nesting instead of concurrent

nesting in the rotated flow case changes the ‘1 and ‘2 error

norms by at most 0.05% in either direction, with larger

effects (particularly at low resolution) for the ‘‘ norm.

Also in the rotated flow case error norms increased by no

more than 5% for refinement ratios of 2, 4, and 8 com-

pared to our factor-of-three refinement, and error norms

only increased by a factor of a third over the factor of 3

refinement when a refinement ratio of 16 was used.

The unstructured-grid model of Ringler et al. (2011)

with a locally refined region had 12-day global ‘2 errors

TABLE 2. 5-day error norms for c48 simulations of the shallow-water balanced geostrophic flow test (Williamson test case 2).

Zonal Rotated

‘1 ‘2 ‘‘ ‘1 ‘2 ‘‘

Single-grid c48 3.28 3 1025 3.97 3 1025 2.81 3 1024 4.83 3 1025 6.68 3 1025 6.35 3 1024

Nested-grid c48 3.85 3 1025 4.52 3 1025 3.27 3 1024 9.10 3 1025 1.29 3 1024 6.36 3 1024

FIG. 4. Absolute 5-day height errors for the shallow-water balanced geostrophic flow test (Williamson test case 2) on

a c48 coarse grid. Contour interval is 0.1 m, negative values dashed, and zero contour suppressed.
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progressively increasing with greater refinement, so that

the error norm with a mesh-size variation of 16 was

an order of magnitude larger than that the uniform-

resolution simulation. Weller et al. (2009) tested a

number of different grid geometries in the Atmosphere

Field Operation and Manipulation (AtmosFOAM)

model, and found that errors increased by as much as

a factor of 2 when refining a hexagonal grid, and rela-

tively minimal increases in errors when refining a cubed-

sphere grid or a triangular grid. The adaptive finite-

volume simulation of St-Cyr et al. (2008), which used

a gradual factor of 4 refinement, found the ‘2 error in

a a5 p/4 simulation to increase by a factor of about 2.5

compared to a uniform-resolution simulation, but in

simulations using sixth-order spectral elements the er-

ror was halved in a refined simulation compared to

a uniform-resolution simulation.

An empirical convergence rate can be computed by

performing simulations across a range of resolutions,

from c24 (roughly 400-km grid spacing) to c180 (50-km

grid spacing) and using a least squares fit to the error

norms as in Harris et al. (2011). The results for the ro-

tated flow test are depicted in Fig. 5. In the ‘1 norm the

rotated flow case converges at an order of about 1.5 for

both the single- and nested-grid simulations; for the

zonal flow case the convergence rates are about 1.7. The

other error norms show more impact from the singular

grid edges, which causes a loss of convergence in the ‘2
norm at c180 resolution, and little convergence in the ‘‘
norm. That the nested-grid solutions have nearly iden-

tical ‘‘ norms at c48 and higher resolutions indicates

that the error in this norm is primarily due to the coarse-

grid’s edges and not to nested-grid artifacts. Disregard-

ing the c180 simulation would yield convergence rates of

about 1.7 in the ‘1 norm for both flows and both single-

and nested-grid simulations, and of about 1.4 in the ‘2
norm. In the zonal flow cases the ‘2 norm convergence

rate is about 1.3, including the c180 simulations at which

convergence begins to degrade. Convergence rates were

little changed when refinement ratios of 2 or 4 were

used.

The unstructured-grid model of Ringler et al. (2011)

found a qualitative convergence rate between first and

second order in the ‘2 norm for locally refined regions

with refinement ratios between 2 and 16, but with slower

convergence at higher resolutions. Weller et al. (2009)

considered a variety of uniform-resolution and refined

global grids and found roughly second-order accuracy in

the ‘2 norm in all cases. Lee and MacDonald (2009)

achieved second-order convergence in their uniform-

resolution icosahedral model in all three error norms,

and Li et al. (2008) found varying convergence rates

between first and third order in all three error norms for

their multimoment model on the Yin–Yang grid. Ullrich

et al. (2010) found convergence rates nearing fifth order

using a fourth-order finite-volume method on a cubed-

sphere grid, using a special remapping procedure to limit

errors due to the cube edges.

2) ISOLATED MOUNTAIN TEST CASE

A more complex test of the shallow-water solver is

Williamson test case 5, in which an initially uniform

geostrophic flow impinges upon a synoptic-scale moun-

tain in the midlatitudes to create a Rossby wave train.

This test case is more nonlinear than is test case 2, and as

a consequence there exists no known exact solution. We

will therefore use the output of a high-resolution c720

simulation, with roughly 12-km grid spacing, as our ref-

erence solution against which error norms can be com-

puted. The simulations presented in this section also use

fluxes computed from PL07’s modification to Suresh and

Huynh (1997). Also, in this section we use b 5 0.4, the

same as in Chen and Lin (2011), which yields smaller

error norms in this test case.

The coarse grid is rotated so that the center of one of

the cubed-sphere panels is located over the mountain,

which is at 308N, 908W. In nested-grid simulations the

nest is centered over the mountain as well; for this test

FIG. 5. Convergence of absolute 5-day height errors for the rotated shallow-water balanced geostrophic flow test (Williamson test

case 2). Empirical convergence rates are given in the legends. Tests are performed without a monotonicity constraint. Note the different

vertical axis for the ‘‘ norm.
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case, the nested grid has been enlarged to cover the entire

mountain. No smoothing is applied to the topography,

although the results were little changed when using to-

pography with a continuous third derivative. The error

norms are computed as in (6), with hIC replaced with the

height field of a c720 control simulation, using an area

average to bring the control solution to the same reso-

lution as the coarse grid of the simulation being evalu-

ated. All analyses for this test case use the total height of

the fluid surface: the height of the topography plus the

fluid depth.

The total height field (Fig. 6) is nearly visually in-

distinguishable between our simulations for resolutions

better than c30, a result also found by LR97, Li et al.

(2008), and Lee and MacDonald (2009). The same is

true for the zonal wind fields (not shown). The total

height field in the nested-grid simulations are little dif-

ferent from those in the single-grid simulations of the

same resolution. The height differences at day 15 be-

tween two lower-resolution simulations and the c720

control simulation are shown in Fig. 7. In this test case,

the cubed-sphere artifacts are more difficult to see as

the error is dominated by phase errors in the lee waves.

Some nested-grid artifacts are visible, particularly at

latitudes north of the mountain. The amplitude of the

nested-grid artifacts decrease with increasing resolution,

so that at c180 resolution the error norms (Fig. 8) are

nearly identical in the single- and nested-grid simulations.

A consequence of this reduction in nesting artifacts is that

the empirical convergence rate, which falls short of first

order in the single-grid simulations, is increased in the

nested simulations to roughly first order.

A few studies give error norms and convergence rates

for this test case. Ringler et al. (2011) found a conver-

gence rate qualitatively between first and second order

in the ‘2 norm, and that the errors were slightly smaller

when using a refined grid. Weller et al. (2009) found un-

even ‘2 convergence rates between first and second order

for a variety of grid geometries, and that refinements ei-

ther increased or decreased the error norms.

3) ROSSBY–HAURWITZ WAVE

The Rossby–Haurwitz wave,Williamson test case 6, is

most interesting because the wavenumber-4 Rossby–

Haurwitz wave is unstable (Thuburn and Li 2000), and

truncation and round-off errors will eventually grow and

cause the wave to break. Thus, the time that the model

can maintain the wave is a useful measure of how

quickly the model allows numerical errors to grow to

large amplitude. While the FV core maintains the wave

well beyond 60 days even at coarse resolutions—LR97

demonstrated stability through 60 days even for a 2.58
resolution simulation, which we have also found for

a c48 cubed-sphere simulation—many other uniform-

resolution global models do not claim stability beyond

14 days (cf. Lee and MacDonald 2009; Li et al. 2008;

FIG. 6. 15-day total height for the isolated mountain test case (Williamson test case 5). Contour interval is 100 m;

topography indicated by light gray lines, with contour interval 500 m.
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Bernard et al. 2009). Longer stability times are found in

other uniform-resolution global models, including those

of Rossmanith (2006) andUllrich et al. (2010).While we

do not expect our nested-grid model to preserve the

wave for longer than a few weeks because of the un-

avoidable error introduced by the nested grid, we expect

to retain stability at a low c48 resolution for at least 14

days, and longer at higher resolutions.

The c48 test case uses the same parameters as for the

balanced geostrophic flow test case. The two-way nested

solution then maintains the wave for 14 days and later

breaks down. If instead we use a c180 grid, in which the

large time step is reduced to 5 min on both grids and

the nested grid made 180 grid cells wide in both di-

rections (so as to cover nearly the same area as in the

c48 simulations), the wave is better maintained at 14 days

and does not break until after 21 days.

b. Jablonowski–Williamson baroclinic instability test

The baroclinic instability test case of Jablonowski and

Williamson (2006) is a common test for three-dimensional

global models to show that a reasonable baroclinic wave

can be simulated in a perturbed baroclinically unstable

flow. In our nested-grid simulations we wish to show that

two-way nesting does not appreciably distort the synoptic-

scale baroclinic wave compared to a single-grid solution,

and that nesting permits finer-scale features to be rep-

resented in the solution.

The initial condition is as in Jablonowski and

Williamson (2006). The cubed sphere is rotated so that

FIG. 7. Absolute 15-day total height errors for the isolated mountain test case (Williamson test case 5). Contour

interval is 5 m for the c30 simulations and 1 m for the c180 simulations, negative values are dashed, and the zero

contour is suppressed. Topography indicated by light gray lines, with contour interval 500 m.

FIG. 8. Convergence of absolute 15-day height errors for the isolated mountain test case (Williamson test case 5). Empirical convergence

rates are given in the legends. Tests are performed without a monotonicity constraint. Note the different vertical axis for the ‘‘ norm.
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the initial perturbation, at 408N, 208E, is centered in one

of the panels. The nested grid (seen in Fig. 9) is then

placed so that it covers the deepest low in the resulting

baroclinic wave train at t 5 10 days.

Our c90 simulations use a large time step of 20 min on

both grids, with 10 and 21 small time steps per large time

step on the coarse and nested grids, respectively. The

nested grid is a 3:1 spatial refinement of the coarse grid

and is 90 grid cells wide in both directions. The model

uses the same 32-level vertical discretization as in Zhao

et al. (2009) and in Chen and Lin (2011).

Results of the c90 simulations are seen in Fig. 9. The

nested grid is not causing any obvious distortion of

the baroclinic wave compared to the single-grid c90

solution; furthermore, the low center is more tightly

rolled in the nested-grid simulation, as best seen in the

vorticity field (Figs. 9d–f). This is made more apparent

by examining a close-up of the low (Fig. 10). A single-grid

c270 simulation—one with the same resolution globally

as does the nested grid in the c90 simulation—shows

a low which is even more tightly wrapped than the c90

nested-grid simulation. Since the tests of Jablonowski

andWilliamson (2006), and a similar set of tests in L04,

show that the low in these test cases becomesmore tightly

wrapped with increasing resolution, we expect the c270

simulation to be more tightly wrapped than either c90

simulation; however, introducing grid nesting in the

c90 simulation allows more of the roll-up to appear

FIG. 9. Jablonowski–Williamson test case solutions at day 10 for (a),(d) a single-grid c90

simulation; (b),(e) a nested-grid c90 simulation; and (c),(f) a single-grid c270 simulation. In (a)–

(c) surface temperature (K, color) and pressure perturbation (contour interval 4 hPa, negative

values dashed) are shown; in (d)–(f) 850-hPa absolute vorticity (positive values in color, neg-

ative values contours of interval 23 1025 s21) is shown. Here, the nested grid is outlined in red.
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FIG. 10. Jablonowski–Williamson test case solutions at day 10 on the (a),(b) single-grid c90

simulation; (c),(d) nested grid of a two-way c90 simulation; and (e),(f) the c270 single-grid

simulation. In (a),(c),(e) surface temperature (K, color) and pressure perturbation (contour

interval 4 hPa, negative values dashed) are shown; in (b),(d),(f) 850-hPa absolute vorticity is

shown (positive values in color, negative values contours of interval 1025 s21; note that the

contour interval of the negative values is smaller than that of the positive values, to show detail

in the vorticity field).
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than does a simulation without nesting. Examination

of the nested-grid solution (Figs. 10c,d) does show some

low-amplitude distortion of the solution near the nested-

grid boundary compared to the c270 simulation (Figs.

10e,f), particularly in the vorticity field, but this does not

substantially affect the solution. The nested-grid solu-

tion preserves the strong gradients along the cold front,

demonstrating that the FV core’s maintenance of sharp

gradients (cf. LR97, section 4) is sustained in a nested-

grid simulation. However, the nested grid causes little

improvement of the solution elsewhere. The two c90

solutions are nearly identical outside of the nested re-

gion, save for a propagating nested-grid artifact visible

in the temperature field at 308 longitude (Fig. 9e).

A series of c180 simulations were performed (Fig. 11)

using the same model parameters as the c90 simulations

except that the large time step was 10 min on both grids

and used a nested grid 180 cells across to cover approxi-

mately the same area as in the c90 nested simulation. The

nested-grid solution is no worse than the single-grid c180

solution, and the fine structure inside the deepest low is

more tightly wound in a nested-grid c180 simulation, al-

though not as much as it is in the c540 control simulation.

Outside of the nested region there is no improvement to

the solution.

The error introduced by grid nesting can be quantified

by comparing solutions to a high-resolution solution taken

as ‘‘truth.’’ As in Jablonowski and Williamson (2006) we

will compute ‘2 error norms in the surface pressure field

on the global grid as a function of time; the norms are

computed as in (6) but with h replaced by surface pres-

sure ps and hIC replaced with the surface pressure from

a c540 reference simulation, using an area average to

bring the c540 solution to the same resolution as the

FIG. 11. As in Fig. 9, but at (a),(b),(d),(e) c180 resolution and (c),(f) c540 resolution.
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coarse grid of the simulation being evaluated. For com-

parison, we have also performed a pair of c60 simulations;

in all nested simulations the nested grid is at the same

location. Both the single-grid and nested-grid solutions

show increasing error growth during the first twoweeks of

the simulation (Fig. 12a) before the error ‘‘saturates’’ as

both the reference and the lower-resolution simula-

tions equilibrate and mix out their potential vorticity

gradients. Both single- and nested-grid simulations show

convergence at increasingly high resolutions, with only

a slight increase in error and no pathological error

growth due to the nested grid. The difference between

the nested and single-grid simulations is greatest in the

first week of the simulation; as a result of the impulsive

start of the model and the small initial perturbation used

to excite the baroclinic wave, artifacts from the nested

grid will dominate the error at early times. Indeed, the

percent increase of the error norm compared to the

equivalent single-grid simulation is at its greatest during

the first week of the simulation, although even at their

greatest the nested-grid simulations’ global error norms

are less than twice that of the single-grid simulation.

From day 9 onward, the error norms in the nested-grid

simulation are no more than 40% greater than those in

the corresponding single-grid simulation. The effect of

grid artifacts is even more apparent for errors computed

only over the nested region (Fig. 12b). During the first

week these artifacts are the only disturbances to the

initial condition in the nested-grid region. Once the

wave enters the nested grid, the nested-region error

norms in a nested-grid simulation are more similar to

those in a single-grid simulation, with increases in the

nested-grid simulations’ error norms being nomore than

20% between days 9 and 12, and on day 10 the errors are

modestly (5%–20%) lower for all three nested-grid

simulations; in the c180 simulation the lower errors are

sustained through day 13. The errors are found to in-

crease at t 5 10 days when using serial instead of con-

current nesting, although by less than 1% globally and

less than 5% over the nested region. Using a refine-

ment ratio of 2, or decreasing the large time step (while

also decreasing the number of small time steps, so as to

hold the small time-step length constant) caused little

change to the error norms except very early in the sim-

ulation, when the error is dominated by startup noise, or

very late once the error has saturated. Note that in all of

the simulations the error norms computed over the entire

domain are typically smaller than those limited to the

nested-grid region, since error norms are defined as area

averages and much of the global domain, including the

entire Southern Hemisphere, has much lower errors than

the active region covered by the nested grid.

c. Held–Suarez climate integration

An important test for global dynamical cores is a

multiyear climate integration using the Held–Suarez

forcing (Held and Suarez 1994) to simulate the effects of

idealized, zonally symmetric diabatic heating and sur-

face drag in a dry dynamical core. Here, we will evaluate

the impact of a nested grid on the climate statistics

compared to a single-grid model. We first present results

from a pair of c48 simulations, which use the same grid

(and indeed the same dynamical core) as in the Geo-

physical FluidDynamics LaboratoryAtmosphericModel

version 3.0 (GFDLAM3; Donner et al. 2011) model, and

has an average gridcell width of about 200 km. The large

time step is 20 min on both grids, with 4 and 12 small time

steps per large time step on the coarse and nested grids,

respectively. The remainder of the model configuration is

as for the Jablonowski–Williamson test cases, except that

the model grid is not rotated, and that the nested grid is

again centered in an equatorial panel.

FIG. 12. Jablonowski–Williamson test case surface-pressure ‘2 errors relative to a c540 simulation over (a) the

entire global domain and (b) the part of the coarse grid covered by the nested grid. Note the logarithmic scaling on the

vertical axis.
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Zonal means over a 2000-day period from c48 simu-

lations, after a 200-day model spinup period, are shown

in Fig. 13. In Figs. 13a,e,i, the vertical velocity v5dp/dt

is depicted, computed as in L04, as a useful diagnostic of

the strength of the meridional overturning circulations.

The zonal means are very similar between the two

simulations, and the differences between the simulations

(bottom row) are small; the same is true for the eddy

covariances (Fig. 14). Note that the greatest difference

between the nested and single grid simulations is not in

the tropics, where the nested grid is located, but in the

midlatitudes, although large differences can be seen in

the tropics near the top boundary. The asymmetry be-

tween the differences in the Northern and Southern

Hemispheres decreases when examining the next 2000

days of the simulations (not shown). Furthermore, there

is little difference between our results and those of L04,

which used the latitude–longitude FV core: the most

apparent difference between our c48 simulations and

L04’s 28 simulations (of similar resolution) is that our

subtropical descent (Figs. 13a,b) is stronger, and our

subpolar ascent is weaker. Midlatitude eddy covariances

are also slightly stronger in our simulations (Fig. 14),

likely due to reduced implicit numerical diffusion in the

cubed-sphere core.

Differences between the nested- and single-grid

simulations become more apparent when examining de-

viations from the zonal means, since ideally the time-

averaged fields should be zonally symmetric. These

asymmetries are most pronounced in the v field, which

shows noticeable errors at the cubed-sphere edges at

the surface (Figs. 15a,b) but more prominently at 500 mb

(Figs. 15c,d). Asymmetries are also apparent at the

nested-grid boundary, which are larger than those at

the cubed-sphere edges at the surface but are impercep-

tible at 500 mb. Other fields show little distortion due to

the nested grid: for example, the 500-hPa u (Figs. 15e,f)

shows little deviation from zonal symmetry due to grid

structure. In both the nested and single-grid simulations

the asymmetry between the Northern and Southern

Hemispheres, as well as deviations from zonal symmetry,

decreases for longer simulations. Tests using a shorter

large time step of 5 min, with the small time-step length

unchanged, found that the artifacts in the v field were

greatly reduced, although at the added computational

expense of more frequent vertical remappings and two-

way updates.

Similar results are found from a pair of c90 simula-

tions, which are set up the same as the c48 simulations

except that the large time step is now 10 min on both

FIG. 13. 2000-day-averaged c48 Held–Suarez simulation zonal means: single-grid simulation (a) v (contour interval 5 hPa day21), (b) u

(5 m s21), (c) y (0.25 m s21), and (d)T (10 K). (e)–(h) As in (a)–(d), but for the nested-grid simulation. (i)–(l) The difference between the

nested and coarse-grid simulations is depicted; contour intervals are (i) 0.25 hPa day21, (j) 0.25 m s21, (k) 0.005 m s21, and (l) 0.05 K. In

all panels negative values are dashed and the zero contour has been suppressed.
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grids. The zonal means and eddy covariances (not shown)

are very similar to those in the c48 simulations (Fig. 13).

The difference between the nested and single-grid c90

simulations (Fig. 16) is similar to those in the c48 simu-

lations. The greater differences between the nested and

single-grid simulations in some fields (particularly v and

uy) at higher resolution may be due to there being more

finescale variability in the solution at c90 than at c48. The

noise in the v field (Figs. 17a–d) due to the cubed-sphere

edges and nested grid are smaller than in the c48 simu-

lations, and again grid artifacts are imperceptible in other

fields (Figs. 17e,f).

d. Lee vortices

The final test simulates vortex shedding in the lee of

the Big Island of Hawaii (Smith and Grubi�si�c 1993) to

determine whether the nested grid can introduce dis-

turbances downstream of the nest caused by features

that would not be resolved by the coarse grid alone. We

do not aim to precisely reproduce observed vortices on

a particular date, but to instead show that vortices that

could not appear in a single-grid simulation can be sup-

ported on the coarse grid in a two-way nested simulation.

These simulations are initialized using a T574 analysis

from the National Centers for Environmental Prediction

(NCEP) at 0000 UTC 1 August 2010 and use 1-min U.S.

Geological Survey (USGS) topography, averaged to the

grid resolution. To prevent surface winds from being

unrealistically strong, the surface drag from the Held–

Suarez test is applied. Two global grids are used: a c360

simulation with a 5-min large time step and 10 small

time steps per large time step, and a c120 simulation

with a 10-min large time step and 10 small time steps

per large time step. A c120 nested-grid simulation was

also performed using a 3:1 spatial refinement, so that

the nested grid has the same resolution as the c360 sim-

ulation does globally, and 30 small time steps; again, the

large time step is identical on the coarse and nested

grids. The remainder of the model is formulated as in

the Held–Suarez test case.

By t 5 72 h there is a clear train of lee vortices ap-

parent in the surface vorticity field in the c360 simulation

(Fig. 18a), extending west-southwest downstream from

the Big Island of Hawaii. Shedding occurs throughout

the 96-h-long simulation (Fig. 18f), although the wake

is more uniform by t 5 96 h. We expect that the c120

FIG. 14. 2000-day-averaged c48 Held–Suarez simulation eddy statistics: single-grid simulation (a) meridional flux of zonal momentum

(contour interval 10 m2 s22), (b) meridional heat flux (2.5 K m s21), (c) zonal wind variance (20 m2 s21, largest contour 260 m2 s21), and

(d) temperature variance (5 K2, largest contour 40 K2). (e)–(h) As in (a)–(d), but for the nested-grid simulation. (i)–(l) The difference

between nested and coarse-grid simulation is depicted; contour intervals are (i) 0.2 m2 s22, (j) 0.1 K m s21, (k) 2 m2 s21, and (l) 0.2 K2. In

all panels negative values are dashed and the zero contour has been suppressed.
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nested simulation should have vortices form on its nes-

ted grid, but we also find that the nested-grid vortices are

able to propagate out of the coarse grid and remain

coherent downstream (Fig. 18b), and are slowly diffused

by the dissipation in the numerics. Again, vortex shed-

ding continues throughout the simulation (Fig. 18g). By

contrast, the vortices in the single-grid c120 simulation

are much weaker and poorly defined (Figs. 18c,h), in-

dicating that at c120 resolution (roughly 75 km) the

150-km-wide Big Island of Hawaii is not well-enough

resolved for the processes producing lee vortices to act.

The poorly resolved topography in the single-grid c120

simulation creates much less of the baroclinically pro-

duced vorticity needed on the flanks of the island for

vortex generation: the absolute value is at most 1.9 3
1025 s21 at t5 72 h, compared to 55.13 1025 s21 in the

single-grid c360 simulation and 25.8 3 1025 s21 on the

coarse grid of the nested-grid c120 simulation. (On the

nested grid, the maximum vorticity is 74.4 3 1025 s21.

This value is larger than in the single-grid c360 case

because the terrain smoothing is not as strong on the

nested grid, and so the mountain is somewhat steeper.)

The vorticity that does appear in the single-grid c120

simulation are transients caused by the impulsive startup

of the simulation, and continuous shedding does not

occur.

To determine whether the vortices in the nested test

cases are merely noise generated by the nested-grid

boundary, two sensitivity tests were carried out. A test in

which the nest was shifted southward, so as to move the

sensitive southwest corner of the nest out from Hawaii’s

wake (Figs. 18d,i), produced a nearly identical solution.

FIG. 15. 2000-day averages, with zonal means removed, for (a),(b) lowest model-level v/v0 (contour interval 0.01);

(c),(d) 500 hPa v/v0 (0.1); and (e),(f) 500 hPa u/u0 (0.01), in c48 (a),(c),(e) single-grid and (b),(d),(f) nested-grid

simulations. Characteristic velocities are v0 5 10 hPa day21 and u0 5 10 m s21. In all panels the zero contour has

been suppressed for clarity, as has been the grid geometry in (a)–(d), and negative values are plotted in gray.
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Alternately, if the nested grid was shifted westward so

that the Big Island of Hawaii no longer lies within the

nest (Figs. 18e,j), there is no identifiable vortex shedding

and the solution is similar to the c120 single-grid simu-

lation (Figs. 18c,h). In this case, there is no visible noise

in the vorticity field that might be attributed to the

boundary of the nest.

e. Timing

Grid nesting would be worthless if it did not allow

substantial time savings compared to a uniformly high-

resolution simulation. However, the amount of message

passing involved in two-way updating on parallel ma-

chines is sufficiently large that some modelers find two-

way nesting prohibitively expensive (C. F. Mass 2010,

personal communication). To test the performance of

our grid nesting methodology, we have performed a se-

ries of Jablonowski–Williamson tests to determine the

time a nested simulation takes compared to a uniform-

resolution simulation with the same resolution globally

as does the nested-grid simulation on its nest. Five

identical 10-day simulations were performed inwhich no

disk I/Owas done to evaluate the speed of the dynamical

core; otherwise the simulations were identical to those

in section 3b. These simulations were performed on

the Gaea supercomputer (http://www.ncrc.gov), a Cray

XT6 system with 2576 12-core 2.1 GHz 64-bit AMD

Opteron processors.

All of the nested simulations shown in Fig. 19 take

longer to execute than a simulation of just the coarse

grid using a similar number of processors. However, all

of the nested-grid simulations also run faster than a

single-grid simulation with the same resolution globally

as on the nested grid; a uniform-resolution c180 simu-

lation takes 1000 s with 216 processors, which is more

than 4 times longer than even the slowest c90 nested-

grid simulations, and 15 times longer than the fastest. A

c540 simulation using 600 processors (not shown) took

8000 s to complete a 10-day integration, which is 3 times

slower than the slowest c180 nested-grid simulation and

10 times slower than the fastest.

How much more expensive is running a nested grid

than just its parent coarse grid? Serial nesting increases

the execution time by anywhere from 60% to nearly

doubling it compared to the time for just a single grid.

However, using concurrent nesting, in which the nested

grid receives its own set of processors, has the potential

to greatly speed up nested-grid simulations, often by only

adding a relatively small number of processors. Most

notably, a two-way c180 concurrent-nested simulation

assigning 96 processors to the coarse grid and 36 to the

nested grid—for a total of 132 processors—executes in

less than 10% more time than did a single c180 grid

alone with 96 processors. Care must be taken to ensure

that enough processes are assigned to the nested grid: for

example, a c60 simulation with 24 processors assigned to

the coarse grid and only 4 to the nested is actually slower

than a serially nested simulation, although this problem is

resolved by assigning 9 processors to the nested grid.

One-way nested concurrent simulations are faster than

are the equivalent two-way nested simulations, but typi-

cally by less than 10%.

While some consideration of the number of pro-

cessors to be allocated to a nested grid is necessary—

similar to that given to apportioning processors between

the components of a coupledmodel—our results suggest

FIG. 16. Difference between c90 nested and coarse-grid simulations: (a)–(d) As in Figs. 13i–l and (e)–(h) as in Figs. 14i–l.
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that a little such effort can yield a substantial improve-

ment in computational efficiency in environments with

large numbers of available processors.

4. Summary

Regionalmodels havemany disadvantages for climate

simulation and for weather prediction on time scales of

more than a few days, because unlike global models they

require the specification of boundary conditions taken

from a model that nearly always has different dynamics

and numerics. Here, we present a two-way global-to-

regional nested version of the FV core allowing for better

resolution over a limited area using the same model

equations and discretization throughout. Our nested-

grid boundary conditions and nested-to-coarse two-way

update are simple: the boundary conditions are simply

linearly interpolated coarse-grid data, and two-way

updating is simply a vorticity-conserving average to

corresponding coarse-grid cells of all variables except

mass, allowing us to easily achieve mass conservation

on the coarse grid. We also use a ‘‘concurrent’’ nesting

strategy, allowing both grids to run simultaneously using

time-extrapolated boundary conditions on the nested

grid. We have shown that concurrent nesting can greatly

increase the efficiency of the nested model on massively-

parallel systems compared to the more common ‘‘serial’’

nesting technique, with only minor increases (or even

minor decreases) in the error norms.

Despite the simplicity of our nesting methodology, we

find that the degradation of large-scale balanced flows,

sensitive to inhomogeneities in grid structure, is limited to

increases of at most a factor of 2 in global error norms

when a nested grid is introduced into a uniform-resolution

coarse-grid simulation. This is true for either of a pair of

shallow-water test cases and in the three-dimensional

FIG. 17. As in Fig. 15, but for c90 simulations.
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Jablonowski–Williamson baroclinic instability test case.

Furthermore, our nested-grid simulations do not lose the

convergence properties of the single-grid simulations. In

a Held–Suarez climate simulation, grid artifacts in the

vertical velocity field at the boundary of a nested grid were

comparable to those at the edges of the cubed-sphere global

grid; these artifacts decreased as the resolution increased

from c48 to c90, and in other model fields were impercep-

tible. Differences in the zonal means and eddy statistics

between single- and nested-grid simulations were small

compared to the magnitudes of the means themselves.

In the Jablonowski–Williamson test case, structures in

a mature low were more detailed in a nested-grid sim-

ulation, without the nest disrupting the baroclinic wave

train, although the nested-grid solution’s low was not as

well developed as that in a uniform high-resolution

simulation. Also, while the low was passing through the

nested-grid error norms in the nested-grid region were

at most 20% larger, and at some times modestly smaller,

than the corresponding single-grid simulation. How-

ever, in this test case the nested grid did not improve the

solution beyond the bounds of the nest. A different test

case, initialized with NCEP analyses and USGS to-

pography, showed that a c120 simulation that could not

reproduce Hawaii lee-vortex shedding seen in a c360

simulation could do so when a nested grid was intro-

duced. The lee vortices resolved by the nested grid were

also observed to propagate out of the nested region and

downstream into the coarse grid.

Nesting so far has been implemented and tested in

idealized, dry simulations; work is planned to extend the

nesting to simulations with full physics and to enable

moving grids that can track a propagating disturbance,

such as a tropical storm or pollutant plume. Also plan-

ned is two-way updating that only transmits the part of

the nested grid that will affect the coarse grid outside of

FIG. 18. Surface vorticity (contour interval 1025 s21, negative values in gray, values above 5 3 1025 s21 not plotted) simulations

initialized at 0000 UTC 1Aug 2010. (a)–(e) t5 72 h and (f)–(j) t5 96 h. Hawaii is at middle right in each panel. The dotted line in (a) and

(f) shows where the nest would be in the nested-grid c120 simulation.

FIG. 19. Averaged elapsed wall-clock time for five identical Jablonowski–Williamson simulations for different

resolutions and nesting strategies. Concurrent simulations using 28 or 33 processors assign 24 to the coarse grid and

the remainder to the nested grid; those using 112 or 132 processors assign 96 to the coarse grid; and those using 252 or

297 processors assign 216 to the coarse grid.
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the nest, greatly decreasing the amount of data to pass

between processors and ideally speeding up two-way

simulations. The nesting described in this paper is being

implemented in GFDL High-Resolution Atmospheric

Model (HiRAM; Zhao et al. 2009; Chen and Lin 2011).
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APPENDIX

Concurrent Grid Nesting Algorithm

The following is a pseudocode algorithm describing

the concurrent grid nesting introduced in section 2b.

Initialization

If a nested grid, compute interpolation weights for

each boundary (halo) point:

w1
i,j5 jyi,j 2YI,J11jjxi,j 2XI11,J j

w2
i,j5 jyi,j 2YI,J jjxi,j 2XI11,J j

w3
i,j 5 jyi,j 2YI,J jjxi,j 2XI,J j

w4
i,j 5 jyi,j 2YI,J11jjxi,j 2XI,J j,

where i, j are nested-grid indices; I5 I01 b(i2 1)/rc
2 1 and J5 J0 1 b(j2 1)/rc2 1 are the coarse-grid

indices; r is the nested-grid refinement ratio; (I0, J0)

is the index of the coarse-grid cell whose lower-left

corner coincides with the lower-left corner of the

nested grid; (x, y)i,j and (X, Y)I,J are the gnomonic

coordinates of a nested- and coarse-grid cell centroid,

respectively; j � j is the great-circle distance between

two points; and b�c is the integer floor function. All

indices are one based. (For face-averaged variables,

a different set of weights are computed, in which

face centroids are used in place of cell centroids.)

For each large time step, starting at time t and in-

tegrating to time t 1 Dt:

If a nested grid, receive BC data Ct
I,J from parent

Send data ft
i,j to nested grids, if any

Perform linear interpolation from coarse grid to

nested grid BC points:

ft
i,j 5w1

i, jC
t
I,J 1w2

i, jC
t
I,J111w3

i,jC
t
I11,J11 1w4

i, jC
t
I11,J

do small time steps n 5 1, N

If a nested grid, set BCs to time-extrapolated values

of previously space-interpolated coarse-grid data: if

(i, j) is in the nested-grid outer halo, then

ft1ndt
i,j 5

�
11

n

N

�
ft
i,j2

n

N
ft2Dt
i,j ,

If this is the first time step of a simulation, simply use

ft1ndt
i,j 5ft

i,j.

Advance FV core solution by dt 5 Dt/N to get ft1ndt
i,j .

end do

Perform vertical remapping, if a 3D simulation.

Perform physics or Held–Suarez forcing, if enabled.

If this grid is the parent of a two-way nested grid

Receive solution ut1Dt
m,n from nest.

If f is a cell-average value, set

ft1Dt
i,j 5

1

r2
�
r

n51
�
r

m51

ut1Dt
m
0
1m,n

0
1n ,

where (m0, n0) is the index of the nested-grid cell

sharing a lower-left corner with the parent-grid

cell (i, j).

If f is a face-average value,

If the face lies in the x-direction, set

ft1Dt
i,j 5

1

r
�
r

m51

ut1Dt
m
0
1m,n

0
,

Else if the face lies in the y-direction, set

ft1Dt
i,j 5

1

r
�
r

n51

ut1Dt
m
0
,n

0
1n ,

end if

If this is a two-way nested grid, send solution ft1Dt
i,j to

parent.

End large time step.

REFERENCES

Atlas, R., and Coauthors, 2005: Hurricane forecasting with the high-

resolution NASA finite volume general circulation model.

Geophys. Res. Lett., 32, L03807, doi:10.1029/2004GL021513.

Berger, M., and P. Colella, 1989: Local adaptive mesh refinement

for shock hydrodynamics. J. Comput. Phys., 82, 64–84.

Bernard, P.-E., J.-F. Remacle, R. Comblen, V. Legat, and

K. Hillewaert, 2009: High-order discontinuous Galerkin

schemes on general 2Dmanifolds applied to the shallow water

equations. J. Comput. Phys., 228 (17), 6514–6535, doi:10.1016/

j.jcp.2009.05.046.

Bey, I., and Coauthors, 2001: Global modeling of tropospheric

chemistry with assimilated meteorology: Model descrip-

tion and evaluation. J. Geophys. Res., 106 (D19), 23 073–

23 095.

304 MONTHLY WEATHER REV IEW VOLUME 141



Chen, J.-H., and S.-J. Lin, 2011: The remarkable predictability

of inter-annual variability of Atlantic hurricanes during the

past decade. Geophys. Res. Lett., 38, L11804, doi:10.1029/

2011GL047629.

Chen,W., Z. Jiang, L. Li, and P. Yiou, 2011: Simulation of regional

climate change under the IPCCA2 scenario in southeast China.

Climate Dyn., 36, 491–507, doi:10.1007/s00382-010-0910-3.

Colella, P., and P. R. Woodward, 1984: The piecewise parabolic

method (PPM) for gas-dynamical simulations. J. Comput.

Phys., 54, 174–201.

Courtier, P., and J. Geleyn, 1988: A global numerical weather

prediction model with variable resolution: Application to the

shallow-water equations. Quart. J. Roy. Meteor. Soc., 114,

1321–1346.

Delworth, T., and Coauthors, 2006: GFDL’s CM2 global coupled

climate models. Part I: Formulation and simulation charac-

teristics. J. Climate, 19, 643–674.

Donner, L., and Coauthors, 2011: The dynamical core, physical

parameterizations, and basic simulation characteristics of the

atmospheric component AM3 of the GFDL global coupled

model CM3. J. Climate, 24, 3484–3519.

Dudhia, J., and J. Bresch, 2002: A global version of the PSU–

NCAR mesoscale model. Mon. Wea. Rev., 130, 2989–3007.
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