

NGGPS-MAPP Principal Investigator's Meeting August 2-3 2017

- NGGPS: Next Generation Global Prediction System (NWS/STI)
- MAPP: Modeling, Analysis, Predictions and Projections (OAR/CPO)

PI Meeting Agenda

Wednesday, August 2

- Introduction (Ming Ji, Christopher Hedge, Annarita Mariotti)
- Session I: Testbeds
- lunch
- Session II: Model Physics and Modeling Framework

Thursday, August 3

- Session III: Data Assimilation
- Poster session
- lunch
- Session IV: Verification and Validation
- Session V: Multi-model Ensembles, Post-processing and Applications

Administrative Notes

- For those on the phone: mute your phones during the talks
 - During Q&A, use "raise hand" or "chat" option in GoToMeeting
- For those in the audience: silence your phones
 - During Q&A, use microphones in the aisles
- Facility: (1) access and security (2) Restroom locations
- Meals and coffee breaks: no food/drinks in auditorium!
 - \$10 for beverage/snacks
 - Lunches on your own. Pre-order boxes will be labeled & on table
- Wifi: (NOAAGuest): type your email into browser, click button
- Note there are two other global modeling planning meetings going on: SIP and UMAC. Please be respectful and keep noise levels down when outside of the auditorium.
- Safety and evacuation (see next slides)

NGGPS-MAPP PI Meeting

STI Modeling Program Overview

Dr. Ming Ji, Director
Office of Science and Technology Integration (STI)

Principal Investigators Meeting August 2-3, 2017

Implementation Plan for FV3-GFS (FY2017-2020)

^{*} Q3FY18 FV3GFS will be very similar to operational GFS being implemented in May 2017

^{&#}x27;@ Q3FY19 FV3GFS target resolution is ~10km grid with 127 layers, extends up to 80 km.

^{&#}x27;& Advanced physics: Scale-aware convection, SHOC PBL, Double-moment microphysics, Unified convective and orographic gravity wave drag etc

^{&#}x27;% DA system will be @35 km 127 levels using 4d-Hybrid EnVAR

Extra slides

NGGPS Description

- Fully coupled system: ocean, waves, sea ice, land surface, atmosphere, aerosols and atmospheric composition
- Built using NEMS/Earth System Modeling Framework
- Each component model will be community code

NGGPS Planned Operational Applications

Weather Bill

- H.R.353 Weather Research and Forecasting Innovation Act of 2017
- Authorization not an Appropriation
- Requires NOAA to prioritize weather research to improve weather data, modeling, computing, forecasts, and warnings
- OAR must collaborate with and support the non-federal weather research community by making funds available through competitive grants, contracts, and cooperative agreements (30%)
- NOAA must establish a tornado warning improvement and extension program
- NWS must plan and maintain a project to improve hurricane forecasting
- NWS must collect and utilize information to make reliable and timely foundational forecasts of subseasonal and seasonal temperature and precipitation.

Initial implementation configuration for FV3GFS in FY19

Planned/Projected FY19 FV3GFS configuration

- Resolution: ~9 km 128 levels
- Physics: New physics options implemented in FY18 tuned for FV3
 - Scale and aerosol aware Chikira-Sugiyama Convection Scheme with Arakawa-Wu extension
 - Unified representation of turbulence and shallow convection (SHOC)
 - Double moment microphysics
 - Upgraded LSM, radiation, GWD and Ozone Physics
- DA configuration: Similar to FY18 NEMS/GSM GDAS with additional developments required for FV3 dynamic core, new datasets (GOES-R, JPSS etc.)
- Run times optimized for production suite requirements
- End-to-end system testing for stability, robustness of scientific and technical solutions, non-negative impact for downstream dependencies
- Modern workflow (CROW* for development, T&E; ecflow for production)

Strategic Implementation Plan (SIP) merged with NGGPS Working Groups

Governance

- Decision making, roles/responsibilities, advisory boards, org. alignment, etc.
- Communications and Outreach
 - Common messaging strategy
- Convective Allowing Models (CAMs)
 - Intermediate steps to CAM ensembles,
 Warn on Forecast; test/eval w/community
- System Architecture
 - NEMS evolution; community approach
- Infrastructure
 - Standards/doc; CM; code repository; etc.
 - Role of testbeds; regression testing; etc.
- Verification & Validation (V&V)
 - V&V of ops forecasts vs. R&D testing/eval
 - Unified/standard tools and data formats

- Dynamics and Nesting
 - FV3 transition on global wx/S2S/climate
 - Nests for hurricanes (moving?)
- Model Physics
 - Common Comm. Physics Pkg (CCPP);
 stochastic, scale-aware physics
- Data Assimilation
 - NOAA, NASA integ. w/FV3; coupled DA
 - Joint Effort for DA Integration (JEDI)
- Ensembles
 - Strategy across scales; model uncertainty
- Post-Processing
 - Comm. PP infrastructure; std formats/tools
- Component Model groups
 - Marine models + NOS coastal/bay models
 - Aerosols and Atmospheric Composition
 - Land Sfc Models (LSMs) + hydrology (OWP)

Community Modeling

 The UMAC emphasized the importance of NCEP to more effectively work with the community: private sector, federal, and academic

With NGGPS selection of the FV3 dynamical core, NCEP is seeking to assure that the global model is developed as a community model

- Goals and needs of a community unified modeling system including governance, infrastructure, and modeling component priorities
- Balance between operations and research
 - Degree of support
 - Well-defined path for research to operations transition
- Resources to support the research community participation
 - Partnership with R&D agencies and universities

Roadmap

UDA: Unified Data assimilation SGS: Seasonal Guidance System SSGS: SubseasonalGuidance System WGS: Weather Guidance System RRGS: Rapid Refresh Guidance System WoFGS; WoF Guidance System

Schematic of NEMS FV3GFS

