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SUMMARY

A global shallow-water model based on the flux-form semi-Lagrangian scheme is described. The mass-
conserving flux-form semi-Lagrangian scheme is a multidimensional semi-Lagrangian extension of the higher
order Godunov-type finite-volume schemes (e.g., the piece-wise parabolic method}. Unlike the prece-wise parabolic
methodology, neither directional splitiing nor a Riemann solver is involved. A reverse engineering procedure is
introduced to achieve the goal of consistent transport of the absolute vorticity and the mass, and hence, the potential
vorticity. Gravity waves are treated explicitly, in a manner that is consistent with the forward-in-time flux-form
semi-Lagrangian transport scheme, Due to the finite-volume nature of the flux-form semi-fagrangian scheme and
the application of the monotonicity constraint, which can be regarded as a subgrid-scale flux parametrization,
essentially noise-free solutions are obtained without additional diffusion. Two selected shallow-water test cases
proposed by Williamson ef al. {1992) and a stratospheric vortex erosion simulation are presented. Discussions on
the accuracy and computational efficiency are given based on the comparisons with a Euletian spectral model and
two advective-form semi-implicit semi-Lagrangian models.
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1. INTRODUCTION

Numerical approximations to the intrinsically nonlinear advection process are a diffi-
cult and important part of modelling a complete flnid dynamical system. Modern advection
algorithms such as the van Leer-type schemes (van Leer 1974, 1977, and 1979; Lin et al.
1994), Multidimensional Flux-Corrected Transport (MFCT) (Zalesak 1979), Total Varia-
tionally Diminishing schemes (TVD) (Harten 1983), Piece-wise Parabolic Method (PPM)
(Colella and Woodward 1984), the advective-form semi-Lagrangian schemes (reviewed by
Staniforth and C6té 1991), and the Flux-Form Semi-Lagrangian (FFSL) scheme (Lin and
Rood 1996), are increasingly being used in geophysical fluid dynamics applications. Most
of these schemes are either monotonicity-preserving by design or can be made monotonic
(shape preserving) with an additional constraint (Williamson and Rasch 1989). Much of
the motivation has been to mmprove the accuracy and physical basis of the constituent
advection. In choosing an optimal advection scheme for a particular fluid dynamics prob-
lem, not only does the scientific merit of an algorithm need to be considered, but also its
suitability to the computational platform.

Traditionally, the two most widely used algorithms for numerical weather predictions
and climate simulations are the spectral transform method (e.g., Bourke 1972) and the
centred finite-differencing method (e.g., Arakawa and Lamb 1981). Motivated by better
computational efficiency, semi-implicit semi-Lagrangian methods are widely used with
both spectral and grid-point approaches (e.g., Tanguay ef al. 1990; Bates er al. 1993;
Williamson and Olson 1994; Ritchie er al. 1993). Beyond better computational efficiency,
the 1mproved accuracy due to the semi-Lagrangian advection has also been shown to
impact positively on model performance. For instance, Rasch and Williamson (1991) have
shown large changes in model climatology by replacing only the water vapour transport
equation in a traditional spectral model (the NCAR Community Climate Model) with
a more physically based semi-Lagrangian algorithm. For long-term climate simulations,
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however, there remain legitimate concerns about the non-conservative nature of many of
the semi-Lagrangian algorithms currently in use.

Monotonicity-preserving finite-volume schemes (e.g., the higher order Godunov-type
methods by van Leer and the PPM), although widely used in engineering and astrophysics,
have not been widely adopted in meteorological or oceanographic researches. Carpenter
et al. (1990), Allen er al. (1991), Thuburn (1993), and Lin ef al. (1994) are among the
first to apply such schemes to meteorological problems. These finite-volume schemes are
mass-conserving and fundamentally one-dimensional (1-D). Normally, to apply them in
multidimensional situations operator splitting is used. An error proportional to the size
of the time-step (At) exists in split approaches to multidimensional problems, which is
perhaps the major reason these schemes are not widely used in meteorology and oceanogra-
phy. To reduce the splitting error and also to enhance the computational efficiency, Lin and
Rood (1996, LR hereafter) developed the Flux-Form Semi-Lagrangian (FFSL) scheme,
which is a multidimensional and semi-Lagrangian extension of the above mentioned
1-D finite-volume schemes. Due to its flux-form construction, conservation of the mass
15 automastic. The fimte-volume discretization is local, which not only has an advantage
for modelling flows with sharp gradients, but also makes it more suitable (as compared
with, for example, the spectral method) in a distributed computing environment using the
domain decomposition technique. Our main objective here is to apply the FFSL scheme, a
transport scheme initially developed for passive scalars, to hydrostatic geophysical flows.
The purpose is to evaluate the impact of physically based advection algorithms on the
complete equations of large-scale geophysical flow.

For general non-hydrostatic flows, Godunov-type finite-volume algorithms require
a Riemann solver, which is usunally formulated as a 1-D problem. Multidimensionality is
achieved via the sequential operator splitting (see for example, Carpenter et al. 1990). The
Riemann solver is needed to represent discontinuities or shock waves, which are the rule
rather than the exception in aerodynamic or astrophysical applications (e.g. Woodward
and Colella 1984). Hydrostatic geophysical flows, on the other hand, are dominated by
smoothly varying large-scale motions, which is particularly true from a global perspec-
tive (e.g., 1n climate simulations or medium-range weather forecasts). To the best of our
knowledge, a multidimensional Riemann solver has not yet been developed for hydrostatic
primitive equations. Even if such a solver can be developed, its complexity will be likely to
render the whole model computationally inefficient, as compared with established meth-
ods, for geophysical flows. One could possibly use the 1-D Riemann solver in a sequential
fashion, but this would defeat the purpose of a multidimensional transport scheme, which
is far superior to its operator-split counterpart. In the light of this consideration, we avoid
tackling a very difficult multidimensional Riemann problem and choose instead a more
conventional approach for computing the pressure gradient terms and the ‘time-averaged
advective winds’ (see sections 2 and 3 for definition).

We propose here an algorithm for applying the FFSL transport scheme to a complete
dynamiczl framework, the shallow-water equations. The shallow-water system of equa-
tions is nearly equivalent to the system governming the inviscid compressible flow equations
(1.e. the Euler equations) in two-dimensions. It also represents the horizontal dynamics of
the 3-D hydrostatic primitive-equation system and is therefore often the first step in devel-
oping nwnerical weather prediction and general circulation models. The FFSL transport
scheme will be applied directly to the conservation law for the *mass’, and indirectly
to the conservation law for the ‘absolute vorticity’, via a reverse-engineering procedure
with a two-grid system (a combination of the C- and D-grid; see section 3), which has

the advartage of the Z-grid (Randall; 1994), but without the need to invert vorticity and
divergence.
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In section 2 we will briefly review the multidimensisonal FFSL algorithm, The phi-
losophy and details of the discretization of the shallow-water equation set will be given
in section 3. Particular attention will be placed on the consistent transport of the ‘mass’
and the ‘absolute vorticity’ {(and therefore, the potential vorticity) by the chosen transport
scheme using the vector-invariant form of the equations. In section 4, two of the reference
tests proposed by Williamson er al. (1992) will be performed to evaluate the proposed
algorithm. In addition a stratospheric vortex erosion problem will be presented. Finally, a
discussion and summary is provided.

2. THE MULTIDIMENSISONAL FFSIL. SCHEME ON THE SPHERE — A BRIEF REVIEW

The multidimensional FFSL scheme is derived from a direction-split perspective using
strictly 1-D operators. A procedure is then applied to remove the directional bias and the
dominant (first-order) error resulting from the splitting approach. We will only highlight
the development of the 2-D FESL transport scheme. Detailed derivation, as well as error
and stability analyses, are given in LR. The conservation law (the transport equation) for a
density-like field Q (e.g., in the context of the shallow-water equations, 2 may represent
the depth of the fluid and/or the absolute vorticity) is

0
TV (V) =0 (D

where V = (u, v) is the horizontal vector velocity and ¢ represents the time dimension. To
model Eq. (1), we define F and G as the 1-D flux-form operators for updating Q for one
time-step in the zonal (1) and meridional (#) directions, respectively. The 1-D operators
are assumed only to be 1-D finite-volume scheme, but no explicit form of the 1-D operator
is assumed a priori. Adopting the following standard difference § and average () notations,
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F and G can be written as follows:
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where A is the radius of the sphere, A the longitude, and @ the latitude. ¥ and Y, the
time-averaged fluxes of @ in the zonal and meridional direction, respectively, are defined
as

1 1 AT
Xu*, At; 0" = ~ f uQ dt — hot (6)

i t+At
Y(v*, A, OF) = o f v df — hot {7}

where “hot’ stands for the “higher order terms’. To approximate the ‘time-averaged flux” ¥
(or ) across the boundaries of the grid cell (see Fig. 1), properly defined time-averaged (or
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Figure 1. Schematics of the ‘C-grid” arrangement for the transport of the cell-averaged density-like O field by
the 2-D FFSL scheme.

time-centred) winds, (#*, v*), and the cell-averaged field at time-level n, 0", are required.
The fluxes are then used for updating the cell-averaged fields to the next time-level. As
illustrated in Fig. 1, the advective winds and the cell-averaged ¢ field (the ‘mass’) are
defined on the C-grid (see Mesinger and Arakawa 1976 for the definition of grids A-E).
For convenience in the presentation, we will omit, in the rest of this section, the dependence
of the F and G operators on (u*, v*) and At.

Cross-derivative terms which are essential to a scheme’s stability in multidimensions
are automatically included by applying the 1-D operators sequentially. However, the se-
quential splitting process introduces a ‘splitting error’ term, which is usually directionally
asymmetric. The first step to achieving the desired multidimensionality is to remove direc-
tional biases by averaging two anti-symmetric operator-split algorithms (F followed by
G, or G followed by F; see section 2 in LR). The resulting directional-bias free algorithm

is
O™ = Q" + FI1Q" + 3G(@M] + GIQ" + ; F(@M]. (8)
Scheme (8) still suffers from the ‘deformational error’. Smolarkiewicz (1982) demon-
strated this type of error using the Crowley scheme in a deformational flow field. An
immediate consequence of this error is that a constant @ field will not remain constant
in a non-divergent flow. Furthermore, it can be verified that linear correlation between
constituents will not be preserved by the above algorithm. To address these problems, the
second step is to replace F and G inside the square brackets in (8), the contributions from
the cross-stream directions, with their advecrive-form counterparts f and g, respectively,
to arrive at the following form of the 2-D FFSL scheme.

Q" = Q" + FIQ" + 1g(v;, Ar; QM+ G(Q" + 3 f (u;, Ar; Q)] (9)

where , e
U, =u*, v, =v*.
Scheme (9) is free of the deformational error and preserves lingar constituent corre-
lation exactly, even when a monotonicity constraint is enforced (see LR for the proof). In
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the context of the shallow-water system, transport of the fluid depth (4) and the absolute
vorticity (£2) by scheme (9) ensures that # and  are better correlated during the time-
marching, which in turn ensures that the potential vorticity (PV = $2/ &), a very important
dynamical quantity, i1s better simulated (see section 4).

The generalization of scheme (9) to large time-step (Courant number greater than
one), which only involves slight modification to the 1-D operators, is described in LR.
Equation (9) will be used in the next section to discretize the transport equations for the
‘mass’ (k) and the ‘absolute vorticity’ (€2) in the shallow-water system of equations.

3. DISCRETIZATION OF THE SHALLOW-WATER EQUATIONS WITH THE 2-D FFSL. SCHEME

The mass conservation law for a shallow layer of ‘water’, which in effect can be any
Newtonian fluid, is

d
where h represents the depth of the fluid (the ‘mass’ in the shallow-water system). The

vector-invariant form of the momentum equation in spherical coordinates can be written
concisely in component form as follows:

0 1 ¢

ﬁuuﬂv_Acnseak[x+®] (b
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where A = radius of the earth, A = longitude, @ = latitude, ® = &, + gh, the free sur-
face geopotential (g 1s the gravitational acceleration), ®, = the surface geopotential,
Q=2wsiné 4+ V x V, the absolute vorticity, w = angular velocity of the earth, and
x = 1V . V, the kinetic energy.

Equations (10), (11) and (12) form a complete set of equations. A significant advantage
of the vector invariant form of the momentum equation is that the metric terms, which are
singular at the poles, are absorbed into the definition of the relative vorticity, which is
well defined (i.e., non-singular) at the poles. (The relative vorticity at the poles can be
computed non-singularly by the Stokes’ theorem (see Eq. (19)).) A disadvantage of this
form is that the discretized form of the kinetic energy « needs to be formulated carefully
to minimize inconsistency between Vi and the (discretized) absolute vorticity fluxes (22
and v€2). This inconsistency manifests itself as a spurious momentum source and could
result in the ‘Hollingsworth—Kéllberg instability’ (Hollingsworth et al. 1983; Suarez and
Takacs 1995).

The vector-invariant form of the equations can be easily converted to the (scalar)
vorticity—divergence form. The conservation law for the absolute vorticity can be readily
obtained by taking curl of the vector momentum equation [i.e., V x (11, 12}]

~Q+V- (V) =0 (13)

The divergence (n = V - V) equation is obtained by applying the divergence operator to the
same vector equation. If the vorticity—divergence form is discretized, a way must be found
to invert the pair (£2, n) back to (u, v) each time-step for the time integration to proceed.
The spectral transform method (e.g., Bourke 1972) is ideally suited to this purpose because
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the inversion is nearly trivial. Models based on a local discretization method (e.g., finite-
difference or finite-volume schemes) would need to solve an elliptic equation, which may
in some cases be nonlinear and inefficient to solve (e.g., Bates ef al. 1995, B95 hereafter).

Due to the continuous differentiability of the basis functions used in the spectral
transform method, there appears to be no theoretical advantage for the spectral method
to chooss the vorticity—divergence form over the usual, or vector-invariant, form of the
momentum equations. In fact, they are equivalent for the spectral method if the algorithm
1s designed properly (Ritchie ef al. 1995).

There are, however, significant advantages in choosing the vorticity—divergence form
when local discretization methods are used. Within the linearized shallow-water equations
framework, Randall (1994) discussed in detail the superior wave-dispersion property as-
sociated with the vorticity—divergence form (the ‘Z-grid’). For the nonlinear processes, a
less publicized yet important advantage of the vorticity—divergence form is that the trans-
port of the (absolute or relative) vorticity, a higher-order conservative scalar, 1s modelled
directly. To retain these advantages while avoiding solving an elliptic equation, the idea
introduced by Sadourny (1975) and Arakawa and Lamb (1981, AL hereafter) can be gen-
eralized to discretize the vector-invariant form of the momentum equations. AL’'s method
amounts to a subtle second-order centre-in-space differencing to (10), (11), and (12) on
the C-grid. Some design constraints are enforced to ensure that, after taking curl of the
centre-differenced form of (11) and (12), the resulting vorticity equation is reduced to the
celebrated ‘Arakawa Jacobian’ for vorticity advection (Arakawa 1966) when the flow is
non-divergent. To avoid the Hollingsworth—Ké&llberg instability, the numerical form of the
kinetic energy «, particularly near the poles, needs to be carefully constructed (Suarez
and Takacs 1995). AL’'s method, as well as the spectral method, 1s a spatial discretization
technique. Temporal discretization is independently treated, usually by a leapfrog scheme.
In the proposed algorithm using the FFSL transport scheme, spatial and temporal dis-
cretizations are intrinsically non-separabie (for the nonlinear transport processes), which,
mathermatically speaking, resulis in a beneficial cancellation between the spatial and tem-
poral {runcation errors. Physically, the FFSL scheme emulates the entire transport process
based on the fundamental control-volume concept.

A design feature of AL’s method is that, in the absence of time discretization error,
both the total energy and potential enstrophy are conserved in the point-wise sense. A
subgrid-scale mixing parameterization must be specified for simulating realistic flows.
In reality, the total energy and enstrophy will not and should not be conserved after the
subgrid-scale mixing process is involved or, equivalently, if the discretized variables are
to be considered as cell-averaged values.

The FFSL algorithin is designed to model the cell-averaged variables, and hence
will onlv conserve ‘mass’ (depth of the fluid /) and the A-weighted potential vorticity,
the absolute vorticity. Energy and potential enstrophy will, in general, decrease mono-
tonically in time due to the subgrid mixing algorithm implicitly chosen with monotonic
1-D finire-volume flux-form operators. This should be contrasted with commonly used
subgrid mixing processes such as the Shapiro filter (Shapiro 1970), harmonic diffusion,
and Smagorinsky’s nonlinear diffusion (Smagorinsky ef al. 1965). The physical basis and
interpretation of these subgrid mixing processes varies widely.

When the van Leer or the PPM schemes are chosen an implied subgrid distribution
is also chosen. This distribution is piece-wise linear for the van Leer scheme and piece-
wise parabolic with the PPM. When a monotonicity constraint is applied local extrema
are prohibited by re-adjusting the subgrid distribution. This adjustment process emulates
the local mixing mechanisms. Since parabolic distributions allow more structure than the
linear distributions, PPM schemes are generally less diffusive than van Leer schemes. In
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V*

Figwre 2. Schematics of the two-grid system: the ‘CD-grid’. The time-centered advective winds (u*, v*) (the
hollow arrows) are staggered as in the C-grid (as in Fig. 1} whereas the prognostic winds (i, v") (the solid arrows)
are staggered as in the D-grid. The cell-averaged relative vorticity is computed by the Stokes theorem.,

both cases, however, the diffusion is scale-dependent and nonlinear. As argued in Rood
et al. (1992), there is some evidence that the nonlinear diffusion associated with monotonic
advection schemes can be interpreted physically, at least for stratospheric tracer problems.
Consequently, in the current implementation of the FFSL algorithm for solving the shallow-
water equations no explicit diffusion will be needed.

Another important difference between the FFSL algorithm and AL’s method is in the
way absolute vorticity is transported in a general divergent flow. In the current approach
the discretized 4 and §2 fields are taken as cell-averaged values, not point-wise values, and
the same scheme is used for transporting 4 and £, regardless of the divergence of the flow.
Functional relations between # and $2 can therefore be better preserved. In AL’s approach,
the equation for the fluid depth 2 (Eq. (10)) is centre-differenced in a straightforward
manner while (11) and (12) are centre-differenced, in a more sophisticated way, to achieve
the goal of vorticity transport by the Arakawa Jacobian for non-divergent flow. Therefore,
the transport scheme for 2 and Q in AL’s approach will be, in general, different. As a
consequence, an initial inear and/or nonlinear functional relationship between these two
conservative variables will be lost during the course of time integration. Therefore, the
AL approach does not maintain the analytic relationships which are derived from basic
physical principles.

To achieve the goal of transporting # and £ by exactly the same manner, an obvious
requirement is that /2 and €2 be defined at the same point (or, in the finite-volume sense,
enclosed in the same cell). Since our prognostic variables are & and (u, v), rather than  and
(§2, n), the D-grid arrangement (see Fig. 2) is the logical choice. As tangential winds are
defined along the cell boundaries, the D-grid is ideally suited for computing the circulation
(and hence, the cell-averaged relative vorticity, in the mean value theorem sense). It is
also the best grid on which to compute geostrophically balanced flow. It is known that
any single-grid system, other than the C-grid or the Z-grid (Randall 1994), generates two-
grid-length gravity waves. This problem can be avoided by computing the time-centred
advective winds (#*, v*) on the C-grid, as required by the multidimensional FFSL scheme
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(see Fig. 1). We shall consider (¢*, v*} on the C-grid as given and defer discussion on how
they should be computed after the discretization of the governing equations on the D-grid
is presentad.

It is observed that if the first term on the right hand side (rh.s.) of (11) and (12)
is interpreted as the time-averaged (from time ¢ to time ¢ 4+ Az) meridional and zonal
flux of the absolute vorticity (see the definition in (6) and (7), respectively, a consistently
discretized absolute vorticity equation can be formed by taking the curl, numerically, of
these two discretized component equations. Directly from Eq. (9), the discretized transport
equation for # and £2 are:

Wl B 4 F(u®, At B®) + GQv*, AL B (14)
Q" = Q" -+ Fu*, At Q%) + G(v*, At; 1) (15)

where . .,
Of = 0" + L[ v*", Ar; "], and 0" = 0" + ; f[w®, Af; O").

It is stressed here that we will not actually update Q" to £2**!. Instead, only the absolute
vorticity fluxes will be used for the discretization of the right hand sides of Eqs. (11) and
(12). The time-averaged absolute vorticity fluxes are the components that make up the
discretized transport equation. This is a ‘reverse-engineering’ procedure: that is, given a
final product we determine how to assemble that product by tearing it apart, component
by component.

To complete the discretization of (11) and (12), the pressure gradient termns are dis-
cretized with the ‘economical explicit’ or the ‘forward-backward scheme’ (Mesinger and
Arakawa 1976; Haltiner and Williams 1980), which is conditionally stable and second-
order accurate if it is combined with a forward-in-time advection scheme such as the one
used here. The final form of the momentum equations are

"t =y 4 Ar *rﬁl}(v* At QY — ! 8, | k™ + " (16)
| ’ ’ AAXcost
1 g A
P " — AL A H (U, A Q 8y | kT -+ P+l 17
v v | {u ) - AAD [K’ -+ :” (17)

where «, the upstream-biased ‘kinetic energy” defined at the four corners of the cell (the
hollow circles in Fig. 2), is formulated as

=3 {HG, A w) + YT, A1 0] (18)

The above form of x¥ minimizes the inconsistency in the momentum equation and thus
avoids the ‘Hollingsworth-Kéllberg instability’. It can be readily verified that (15) can be
recovered by taking ‘curl’ of the two components, (16) and (17), of the vector momentum
equation provided the cell-averaged relative vorticity is computed by the Stokes theorem
as follows:

]
VxVi= V" . dl
AZALAD cos B j;
i 1
— - Sp 1" 1
AAA cos 95’1““ AAB cos 8 olu” cos 0] (19)

where the contour integral is taken counter-clockwise along the boundary of a celi and dl
represents an element of the contour. At the two poles, the relative vorticity 1s similarly
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A A6

Figure 3. Schematics of the Notth polar cap. The great circle distance from one side of the polar cap to the

e : . — A8
opposite side is AAG. The edge of the polar cap is located at # == £ — &=,

computed as the net circulation around the ‘polar cap’ divided by the total area of the polar
cap, which is equal to 27 A%[1 — cos(A8/2)]. The polar cap is defined as the cell enclosing
the pole (see Fig. 3; see also Lin et al. 1994 for details of determining the fluxes into or
out of the polar cap).

Insofar we have not addressed how the time-centred winds V* = {u*, v*) on the C-
grid are obtained. A simple way to accomplish this 1s by a second-order extrapolation in
time followed by an averaging process in space (from the D-grid to the C-grid).

V= 32Vn — lyn-t 20)

This time extrapolation technique has been widely used in ‘two-time-level’ semi-implicit
semi-Lagrangian models (e.g., Temperton and Staniforth 1987; see also the review by
Staniforth and C6t€ 1991). Unfortunately, in addition to being more memory intensive (two
fime levels of winds must be saved}, simulations using (14), (16) and (17) with the advective
winds computed by (20) contain some mild two-grid-length gravity-wave oscillations
when sharp bottom topography 1s present. To eliminate this problem, we discard the time
extrapolation procedure and advance the advective winds at time-level n on the C-grid
(obtained by spatial averaging) for a half time-step to obtain the desired time-centred
values. We are, in effect, employing a two-grid two-step time marching procedure. As in
Al’s method, the vorticity on the C-grid is defined at the four cell corners (the hollow
circles in Fig. 2), not the centre of the cell (the mass point) as on the D-grid. Unlike AL’s
method, this does not corrupt the functional relation between 2 and £ because C-grid
variables #* and (u*, v*) are not prognostic variables in this C-D-grid algorithm. They are
discarded after the prognostic variables A" and (", v"), which are defined on the D-grid,
are updated for one time-step.

For clarity, we describe next the complete cycle of the time marching. Assuming the
time integration starts from time-level n, before updating the prognostic variables on the
D-grid for a full time-step to time-level n + 1, the time-centred advective winds (u*, v*)
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on the C-grid are computed as follows (cf, Egs. (14), (16) and (17)).

At At
h®*=h" + F (ug, ?; f'laﬁ) + G (U; 7;}1}“’!2) (21)
At At \
W=y — Y § oy, - QM) — 8, k™ + @* }, 22
“+21( 5 ) T Aancosg e T (22)
At At \
=yt — — %3 n* — QQ,IZ 5 ok Bb* ] ’ 23
where
1 At 1 At
.le: n - no T ﬂjﬁﬁhn = A X
h h+2f(ua,2;h), h +Qg(v&,2;h),
i . At . 1 , Ot
giufgu-_g:.*.,-if ub*mf’gﬂ)’ ngﬂgc_{_ig (Ub!?’ﬁc)’
W=, o =T,
n__ 5% .n ~5*
e =y , U = U,
B T gy e TR
W, =ul, v, =y,
QF =2wsing + V x V.,

and «**, the upwind-biased kinetic energy defined at the mass point, is computed as

1 At At
* . 7t I n . axl ' 24
fC 2 [% (Hag 2 ¥ uc_) "‘f"’ﬂl’ (Ua! 2 ¥ UC)] ( )

After (u*, v*) are obtained, prognostic variables 2™ and (u", v”) are updated using Eqs. (14),
(16) and (17) which completes a time marching cycle.

Obtaining the advective winds using Eqs. (21), (22) and {23) is more expensive than
simply using Eq. (20). However, the extra CPU time is well spent because the two-grid-
length waves are eliminated without resorting to additional and often ad hoc damping
mechanisms. In this two-grid system, the divergence of the advective winds (u#*, v*) and
the ‘curl’ of the prognostic winds (u”, v"), the relative vorticity, are defined at the same
‘mass point’. As observed by Randall (1994), with the Z-grid the components of the
divergent part of the wind ‘want’ to be staggered as in the C-grid, while the components
of the rotational part of the wind ‘want’ to be staggered as in the D-grid. Therefore, as
far as the linear behavior of the system is concerned, our two-grid system is essentially
the same as the Z-grid. Due to the use of the ‘reversed-engineering approach’ there is no
need to invert the vorticity and divergence, which is a great computational advantage. This
two-gric system is similar to the time and space staggered ‘CC’ or ‘DY’ -grid discussed
by Fox-~Rabinovitz (1991). However, aside from the fact that we are not using centre (in
time and/or in space) differencing technigues, our two-grid system 1s self advancing and
no previous or current information on the C-grid 1s needed or used. (The time-centred
advective winds on the C-grid are computed from the current D-grid variables.) Using the
terminology of Fox-Rabinovitz, we shall term our two-grid system the CD-grid.

The algorithm developed above can be easily applied to aregional modelif appropriate
boundary conditions are supplied. There is formally no time-step restriction associated with
the advective processes. There is, however, a stability condition imposed by the gravity-
wave processes, which are treated exphlicitly (see Mesinger and Arakawa 1976 for the
stability analysis of the forward-backward scheme). For our intended application on the
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whole sphere, a polar filter is therefore recommended for computational efficiency. The
purpose of the polar filter 1s to stabilize the short-in-length (and high-in-frequency) gravity
waves that are being unnecessarily and unidirectionally resolved at very high latitudes in
the zonal direction. To minimize distortion to the meteorologically more important larger-
scale waves, the polar Fourier filter 1s very scale selective and is only applied to the
tendency term in the A* Eq. (21), to #* and v*, and to the tendency terms in (16) and (17).
The strength of the Fourier filter is similar to the one described by Suarez and Takacs
(1995) for a C-grid model using a fourth-order extension of Arakawa and Lamb’s centre
differencing method. Because our prognostic variables are computed on the D-grid, and
the fact that the FFSL transport scheme is stable for Courant number greater than one, in
nonlinear cases in which the transport-advection processes are important the maximum
size of the time-step is about two to three times larger than a model based on Arakawa and
Lamb’s method. This is verified in the shallow-water system and in 3-D dynamical cores
for the GEOS-GCM (Suarez and Takacs 1995).

For the sake of generality, we have not specified the 1-D scheme to be used for the
(inner) advective-form operators (f and g) and the (outer) flux-flux operators (F and
(). It 13 found by numerical experiments that using lower-order operators in computing
the advective winds has no significant effects on the overall accuracy. In the numerical
examples to be presented in the next section, we used the unconstrained second-order
van Leer scheme for the computation of all the fluxes associated with the computation of
the advective winds (Eqs. (21}, (22) and (23)) on the C-grid and the more accurate (but
more CPU time demanding) monotonicity-preserving PPM for updating the prognostic
variables on the D-grid. The first order upwind scheme is always used for inner advective-
form operators (see LR) on both grids. This strategy saves about 25 to 40% of the total
CPU time without noticeable impact on the quality of the simulations.

4. COMPUTATIONAL EXAMPLES

The algorithm developed in the previous section has been extensively tested using
various initial conditions, including analyzed wind and height fields, with or without
bottom topography. Idealized experiments include tests with north—south symmetry (to
test that the model can maintain symmetry), extreme gradients, and balanced steady-state
flows. These tests were useful in guiding the details in the design of the algorithm. For
instance, the time extrapolation technique for obtaining the ‘time-centred’ advective winds
on the C-grid (Eq. (20)) was discarded after it is discovered that short-wavelength noises
were generated in the height field (4) in the presence of sharp bottom topography.

Williamson et al. (1992, W92 hereafter) proposed several test cases for comparing
numerical algorithms for solving shallow-water equations on the sphere. We will present
two selected cases here. (Test case 1, the pure advection case, was presented in Lin and
Rood (1996) in which a convergence test of the FFSL. scheme was also given.) In addition,
we will also present a case in which an initially zonally symmetric flow was forced by
a time-dependent wavenumber-1 ‘mountain’ to emulate the Rossby wave-breaking event
in the stratosphere [see Juckes and Mclntyre 1987; Norton 1994; and Bates and Li 1996
(B96)]. Unless otherwise specified, all computations were done on the CRAY C-90 with
64-bit floating point precision.

The first case selected for presentation is the ‘Test Case 5 from W92, which ex-
amines the nonlinear evolution of a zonal flow impinging on an isolated mountain (see
W92 for details). We will not perform direct error analysis against the published reference
resolution obtained with a T213 spectral model (see Jakob er al. 1993 (J93) and
Jakob et al. 1995 (J95)). We will, instead, perform the test with three different resolutions
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Figure 4. Height fields at DAY-15 for the test case 5 from Williamson ez al. (1992) for the 128 x 64-600 model
(a), the 256 x 128-300 model (b), and the 512 x 256150 model (c}. Contour interval: 50 m. Orography contours
are dashed.

to examine the convergence of the solutions. The resolution is denoted as M x N — Af,
where M = 2x/AA, N = /A8, and A1, if present, indicates the size of the time-step in
seconds. The model therefore has M x (N — 1) grid cells plus two polar caps. To match,
as close as possible, the spectral method’s resolution (on the Gaussian grid), the chosen
resolutions are 128 x 64 — 600, 256 x 128 — 300, and 512 x 256 — 150. The 128 x 64
spatial resolution has nearly the same total number of grid points as the Gaussian gridin a
T42 spectral model, which is a resolution typically used in long-term climate simulations.
The 512 x 256 resolution has nearly the same amount of grid points as the Gaussian grid in
the T170 spectral model, a resolution closer to that of a medium-range numerical weather
prediction model. Figures 4, 5, and 6 show at DAY-13 the total height field (4 plus the
height of the mountain), zonal wind u, and meridional wind v at these three resolutions.
The wingls were averaged to the mass point for the graphical presentation.

The solutions at three different resolutions are almost identical, indicating that, for this
particular problem, convergence has been nearly achieved at these resolutions. They are
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Figure 5. Asin Fig. 4, but for the zonal wind (u) field. Contour interval: 5 m s™*. Negative contours are dashed.

all free of the small-scale oscillations generated upstream of the mountain in the spectral
solutionts (including the T213 reference solution) of J95, There is also more structure in
the tropics of the spectral model solutions. Referring to Fig. 4, it is difficult to find any
differences in the height field at the three different resolutions. The zonal and meridional
wind fields (Figs. 5 and 6) exhibit small differences in the extrema of the fields. All
large-scale features of the height fields are nearly the same as the T213 reference solution
(Fig. 5.1 in J935) except in the tropics and on the upstream side of the mountain where the
T213 solution exhibits mild oscillations and more small-scale structure. This may be due
to “Gibb’s oscillations’ in the spectral solution to problem.

The second test case 15 “Test Case 6° (see W92 for details), a wavenumber-4 Rossby—
Haurwitz wave initial condition. The wavenumber-4 Rossby--Haurwitz wave is empirically
known to be a stable solution to the shallow-water equations. A question posed in J95 is
‘how long the initial solution should be expected to be stable’. Based on a 60-day integration
with the T42 model (with a 600-second time-step), J95 (see also, W92) concluded that
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Figure 6. As in Fig. 4, but for the meridional wind {v) field. Contour interval: 5 m s™*. Negative contours are
dashed.

viable numerical methods should be able to maintain the basic wavenumber-4 structure
for a minimum 14-day time-span.

We integrated our low-resolution 128 x 64 — 600 model, comparable to T42, also for
60 days. The initial condition is computed directly from the analytic form using point-wise
values, not cell-averaged value. Figure 7 shows the percentage changes in the total energy
and potential enstrophy as a function of time. After an initial adjustment period the rates
of decay decrease and approach constant rates after about 10 days. Figure 8 shows the
solutions at DAY-14, DAY-30, and DAY-60. The solution at DAY-14 is remarkably similar

to that of the T42 spectral model (Fig. 5.7 in J95), both in phase and in amplitude. However,
the solutions at DAY-30 and DAY-60 are clearly less deformed than those of the T42 (see

Fig. 6.11 in Jakob et al. 1993). Smolarkiewicz and Margolin (1993) also performed this
test using the same spatial resolution (but with a much smaller 40-second time-step). Their
solutions (see their Fig. 2) appear to be more damped than the spectral solution and the
one presented here.
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Figure 7. Percentage changes in the total mass (the solid line}, total energy (the hollow circles), and potential
enstrophy (the solid circles) as functions of time for the wavenumber-4 Rossby—Haurwitz test case. The total mass
is conserved to machine precision.

As there is no known exact solution, no absolute conclusions can be made regard-
ing the accuracy of a particular algorithm. The spectral transform method has a unique
advantage for this test case because the initial flow field can be exactly represented by
the basis functions which are spherical harmonics. In addition, the spectral method, like
the Arakawa-Lamb’s centre differencing method, is non-dissipative, which is best suited
for preserving long wave structures such as the wavenumber-4 structure in this test case.
In contrast, this test case is quite a challenge to models based on a dissipative transport
algorithm like the one presented here, or the one presented by Smolarkiewicz and Margolin
(1993) based on the MPDATA scheme (Smolarkiewicz 1984), The test results suggest that
the implicit diffusion associated with the 2-D FFSL scheme (based on the 1-D PPM oper-
ator) is not as strong as the explicit scale selective V* diffusion in the spectral model (with
the diffusion coefficient recommended in J93) or the implicit diffusion in the MPDATA
scheme.

Several factors can affect the distortion of the height fields as the approximate solu-
tion evolves in this Rossby--Haurwitz test case. Besides the advection scheme, the basic
formulation of the model (e.g., the way variables are staggered) can impact the solution.
However, it is our conjecture that the deformation of the wave-4 structure is mainly caused
by the diffusion whether implicit or explicit, or alternatively whether of a numerical or
physical character. To investigate this further, the experiment was repeated but with the
1-D PPM operator replaced by the more dissipative second-order van Leer operator (using
the monotonicity constraint given by Eq. 5 in Lin et al. 1994). (Note that the PPM is
formally fourth-order accurate in 1-D for smooth flows.) The solutions thus obtained are
shown in Fig. 9. A stable wavenumber-4 structure is still maintained at DAY-60, but the
solutions appear to be more deformed than the T42 spectral solutions. Nonetheless, the
phase is still nearly the same as the PPM solution and the T42 spectral solution, which is
a very encouraging agreement, This suggests that the scale-dependent diffusion implicit
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Figure 8. Height fields at DAY-14 (a), DAY-30 (b), and DAY-60 (¢) for the wavenumber-4 Rossby—Haurwitz test
case using the 128 x 64-600 model with PPM as the 1-D flux-form operator. Contour interval is 100 m.

in the 1-D operators (van Leer or PPM) does not adversely impact the phase speed of the
waves,

We also tested the model on a SUN workstation using only 32-bit precision. The much
larger rounding errors caused the model to develop some initially small but asymmetric
perturbations that after approximately 50 days grew to corrupt the wavenumber-4 structure.
Repeating the run on the SUN with 64-bit arithmetic eliminated this problem.

The final case to be presented is the simulation of ‘stratospheric vortex erosion’ first
studied by Juckes and McIntyre (1987) using a non-divergent barotropic model. Originally
this experiment was pursued to develop underlying theories of stratospheric dynamics, and
the consequences of dynamical isolation on the distribution of trace species. However, it
is also an interesting and very challenging case to examine numerics.

Numerous studies using shallow-water models as well as contour dynamics have been
carried out to investigate the vortex erosion problem (e.g., Norton 1994; Waugh 1993;
B96, and references therein). B96 investigated three different numerical approximations
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Figure 9. Asin Fig. 8, but the PPM operator was replaced by the monotonic van Leer operaior.

to the shallow-water equations. We follow the same configuration as B96 to facilitate
comparisons,

In the configuration used in B96 and here (see B96 for details), an initially circu-
lar polar vortex is forced ‘from below’ by a time-dependent wavenumber-1 ‘mountain’.
Through nonlinear interaction, smaller-and-smaller-scale structures gradually develop, as
visualized by the evolution of the potential vorticity (PV) contours. A damping mecha-
nism, implicit or explicit, is therefore needed to provide an energy and enstrophy cascade
to the unresolvable scales. A stable vortex core, formation of the strong PV gradients
(PV filaments), clear signature of the Rossby wave breaking, and the formation of the
mid-latitude surf zone are the important features of this problem. As in the first example,
we performed this simulation with three different resolutions. Due to the nature of this
problem, the convergence of the solution is more difficult to achieve. This test case is far

more challenging than the previous two standard test cases.
Figure 10 shows the PV contours of these three runs at DAY-24 (using the same
contour nterval as in B96). There are larger differences than in the “Test Case 5’ shown
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Figure 10 Polar stereographic projection {from the equator to the north pole) of the potential vorticity contours
at DAY-24 in the “stratospheric vortex erosion’ test case at three different resolutions.

in Figs. 4 to 6. The 128 x 64 resolution misses many features visible in the two higher
resolution runs. This is especially obvious in longitudes 120° to 180° and latitudes 30°
to 60°. Also a blocky character is evident in the line of strong PV gradient that extends
from longitades 10°-160° and latitudes 30°-60°. This blocky nature is characteristic of
monotonicity algorithms that are not well matched to their application (see Rood 1987).
In the 256 x 128 experiment the blocky structure has moved down the spatial scale and is
visible in the 270°~360° quadrant. In the 128 x 64 experiment this quadrant is sigmficantly
more diffused. The PV gradients are very sharp in the 256 x 128 and the 512 x 256 runs.
The 512 x 256 run, in particular, developed sharp separation between polar and midlatitude
‘air’ reminiscent of the results from contour dynamics and contour advection studies.
B96 presented results with two semi-implicit semi-Lagrangian models, one based on
the momentum equation (the u—v semi-Lagrangian model; hereafter, u—v SLM) and the
other based on the potential vorticity—divergent formulation (PV-D model, see B95 for
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details). Both models are non-conservative. The results obtained by the spectral model
{Hack and Yakob 1992) are also presented in B96. While our model and the PV-D model
have essentially no adjustable parameters, the spectral model, as noted in B96, must use a
diffusion coefficient 10 times larger than the ‘recommended value’ (see Table 3 in J93) to
prevent a noisy solution. With the exception of u—v SLM, the solutions from the different
models agree reasonably well with the results shown here. The model described here gives
the sharpest gradients at all three resolutions,

Takacs (1995, personal communication) also carried out the same test using a model
based on a fourth-order extension of Arakawa—Lamb’s method, which is used in the GEQS
moddel (Suarez and Takacs 1995). The solutions from the #—v SLM and the GEOS dynam-
ical core fall into the same family, and show some distinct differences from the ones shown
here and those obtained by the PV-D and the spectral models. The most notable differences
are in the tongue of vortex air being drawn towards middle latitudes in the 0°-90° longitude
quadrant. The differences may be related to the fact that u—v SLM and the model based on
Arakawa—Lamb’s method maintain less well the functional relation between 4 and Q. This
is because the two conservative variables are treated inconsistently by different numerical
algorithms, The potential vorticity, which is often regarded as a dynamical tracer, is a sim-
ple function of €2 and 4 (i.e., PV = Q/ k). The PV-D model trivially enforced the relation
because PV itself is a prognostic variable. The spectral model, like the model described
here, also has no such problem because A and €2 are treated in a consistent manner.

5. CONCLUDING REMARKS

A novel method for the discretization of the shallow-water equations on the sphere
using regular latitude-longitude coordinates is described. Mass (the depth of fluid) and
absolute vorticity are transported conservatively and consistently by the multidimensional
FFSL scheme (Lin and Rood 1996), which is based on 1-D monotonicity-preserving finite-
volume schemes such as the PPM. Gravity waves are treated consistently by the explicit
‘forward-backward’ approach of Mesinger and Arakawa (1976) in a two-grid system,
which we termed the ‘CD grid’. This two-grid system has the advantage of the Z-grid
(Randall 1994), but without the need to invert vorticity and divergence.

Three test cases have been presented, and the results were compared with published
results from models based on fundamentally different algorithms. The FFSL algorithm is
shown to be very competitive in accuracy for a given resolution. Compared with the spec-
tral method, the FFSL algorithm is free of high wavenumber distortion near mountainous
regions. The basic wave-4 structure in the Rossby-Haurwitz wave test case is maintained
much better than the spectral model in long-term integration. More diffusive versions of
the FFSL algorithm do show similarities to the spectral solutions. As there is no externally
adjustable parameter, the monotonicity constraint associated with the 1-D finite-volume
flux-form operators acts like a ‘smart’ subgrid-scale flux parametrization, which is nonlin-
ear and adaptive to flow situations. This is particularly evident in the stratospheric vortex
erosion case. While this implicit subgrid mixing-diffusion has some expected characteris-
tics of physical mixing, further study is required to characterize the reality of the subgrid
mixing processes.

The algorithm is self advancing (i.e., no information from the previous time-step
is needed). Therefore, the core memory usage is about half of that required by the two-
time-level semi-Lagrangian models or the spectral models based on the leapfrog time

differencing scheme. The total CPU time required per time-step with the 128 x 64 model
using PPM as the 1-D operators is about (.017 seconds on a single processor C-90, which

is about three times faster than that of the semi-implicit semi-Lagrangian PV-D model
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(B95). The computational efficiency depends on the size of the chosen time-step. Because
gravity waves are treated explicitly, the maximum allowable time-step is much smaller
than that of a semi-implicit semi-Lagrangian model whose time-step is limited by accu-
racy ccnsideration alone. Therefore, our explicit algorithm may not be overall as fast, in
terms of total CPU time, as the more traditional semi-implicit semi-Lagrangian methods
on a vector processing computer (the C-90). However, aside from the fact that it is con-
servative, our algorithm appears to offer better accuracy at a given resolution in the cases
we studied. In addition, since there is no need to solve an elliptic equation, which 1s a
global problem, a fully explicit algorithm is expected to perform relatively better on the
Massively Parallel Platforms. If this turns out not to be the case, a semi-implicit treatment
of the gravity-wave processes can be implemented. Machenhauer and Olk (1995) have suc-
cessfully implemented a semi-implicit algorithm with a “cell-integrated semi-Lagrangian’
(CISL) scheme. The CISL scheme is fundamentally equivalent to the FFSL scheme in the
1-D setting of Machenhauer and Olk. However, it would be more desirable to solve the
vorticity—divergence form (in 2D} in the semi-implicit formulation, instead of the current
two-grid two-step procedure.

The FFSL. algorithm can be readily extended to 3-D hydrostatic primitive equations
and applied to general circulation models. The explicit algorithin is currently being im-
plemerited in a dynamical core for the GEOS~GCM. Preliminary tests indicated that it
is about as fast as the operational dynamical core using a fourth-order extension of the
Arakawa-Lamb method (with a rotated pole) on the CRAY C-90 and J-90.
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