Strategic Implementation Plan (SIP) for a Community-based Unified Forecast System

Data Assimilation Working Group

Presented by
Jeff Whitaker, (ESRL/PSD)

Presented at SIP Coordination Meeting
May 14-16, 2019; College Park, MD
Data Assimilation WG
Membership

- Daryl Kleist NCEP/EMC **
- Tom Auligne JCSDA **
- Ron Gelaro NASA/GMAO **
- Jeff Whitaker NOAA/ESRL **
- Andrew Collard NCEP/EMC
- Ricardo Todling NASA/GMAO
- Nancy Baker NRL

- Curtis Alexander NOAA/ESRL
- Yannick Tremolet JCSDA
- Youngsun Jung OU
- Xuguang Wang OU
- Chris Snyder NCAR
- Steve Penny Univ. Maryland
- Tanya Peevey NOAA/ESRL
- Alex Kuparov
- Eric Bayler NOAA/NESDIS

- Co-Chair **
Data Assimilation WG

Accomplishments & Challenges

• SIP project milestones completed/progress this year:
 – Project 6.1 (Use of observations)
 • GOES-17 AMVs, MetOp-C, Megha-Tropiques/Saphir and Himawari-8/AHI radiances, KOMPSAT-5 and Megha-Tropiques/ROSA GNSSRO, Ozone mapper (OMPS) (work ongoing, some ready for implementation)
 • Traditional Alphanumeric Codes (TAC) to BUFR transition continuing
 • Correlated observation error implementation in GSI
 – Project 6.2 (DA Algorithms)
 • 4DIAU in FV3GFS & model space localization in EnKF (candidates for GFS v16)
 • FV3GFS 3D/4DEnVar/4DVar (no physics) in JEDI (initial capability demonstrated)
 • EnKF and Block Lanczos solvers for ensemble update in JEDI (work started)
 – Project 6.3 (Coupled DA)
 • JEDI coupled ocean/sea-ice analysis (initial system demonstrated)
 – Project 6.4 (JEDI Framework)
 • UFO: forward operators for most obs. types, generic QC filters (initial capability)
 • Marine DA realistic initial system
 • community engagement (JEDI tutorials, IODA workshop)
 – Project 6.5 (Rapidly updating global DA)
 • ESRL/EMC/JCSDA collaboration starting soon with Supplemental funding.
 – SAWG ‘tiger team’ activity: JEDI interface with UFS model
Data Assimilation WG
Accomplishments & **Challenges**

- **SIP project issues (main challenges):**
 - DA cuts across many SIP Annexes (aerosols, marine, land etc), keeping track of all the cross-cutting projects and dependencies is challenging.
 - Is observation processing (ingest, "obsproc", etc.) within the scope? We believe the answer is yes and that re-engineering the operational workflow leveraging the JEDI/IODA project is crucial and needs acceleration.
 - Chicken/Egg problem - many projects are waiting for the enabling technology in JEDI.
Data Assimilation WG
Team Coordination and Dependencies

• List major team coordination/dependency successes or issues.
 – Successes: JEDI progress, FV3GFS v15 implementation, JEDI/UFS SAWG tiger team collaboration.
 – Issues: coordination with DA projects in other Annexes. How can they be coordinated?

• What project(s) should be accelerated (due to criticality to overall effort, dependency from another area, etc.)?
 – JEDI IODA. (coordinate with ‘re-engineering’ of NCEP obsproc infrastructure)
 – JEDI EnKF (needed for CAM, land DA projects).

• Based on experience to date, what change(s) do you recommend to your working group.
 – Roles/responsibilities of working groups needs to be better defined.
Marine (Sea-Ice/Ocean) DA

- **IODA/UFO:**
 - Fairly complete set of marine forward operators (ocean and sea-ice)
 - Conventional observations from FNMOC (Argo, CTD, XBT, moorings, gliders, ...)
 - NESDIS sea surface height (Jason 2-3, SARAL, Cryosat-2, Sentinel-3a)
 - L2 satellite SST products

- **Model encapsulation**
 - MOM6 model advance (file based)

- **Dual-space 3DVAR + multivariate Static B**
 - (ocean and sea-ice)

- **High-resolution** (¼ degree MOM6)

30-day cycling assimilation of satellite SST (NESDIS/ACSPo AVHRR L2P) and altimetry (Jason-2, Jason-3, Sentinel-3a, Cryosat-2, SARAL) with MOM6 1 degree model, 24-hour window. Kuroshio large meander correctly placed
Atmospheric DA (multiple solvers, many models)

3DVar/4D-EnVar/4DVar running with FV3GFS/GEOS
3DVar/4D-EnVar running with MPAS, LFRic
Growing, but not yet complete set of observation operators
work just started on EnKF solver

- 2018-05-15 00z analysis
- One outer loop
- Pseudo model
- 10 iterations
- 200km resolution
- 10 member ensemble
- Radiosonde observations
- 800hPa temperature

Observations: Satellite radiances, AMVs, GNSS-RO, Marine observations, Aerosol Optical Depth, radiosonde, surface ps, aircraft
JEDI interfacing with UFS systems through File I/O:
Flexible components: un-, weakly, or strongly coupled DA

JEDI DA

JEDI Abstract Model

Pseudo-model

FV3GFS File I/O

MOM6 File I/O

CICE5 File I/O

FV3GFS

MOM6

CICE5
JEDI driving UFS systems thru the NUOPC_Driver (in-core):

Flexible components: un-, weakly, or strongly coupled DA