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MOTIVATION

 NCEP GFS/CFS/NAM use 25-km USAF SNODEP 

product and 4-km NOAA’s Interactive Multi-sensor Snow 

and Ice Mapping system (IMS) to improve the accuracy of 

LSM (Noah)-modelled snow depth (SNODEP) and snow 

covered area (IMS). 

 Positive impact of assimilated observations of snow 

depth and snow cover area on predicted meteorological 

variables.

 GOAL: Develop a blended data assimilation-based snow 

depth (SD) analysis with improved accuracy and resolution. 
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DEVELOPED BLENDED ANALYSIS SCHEME  

Daily 12-km SD

 2D-Optimal Interpolation of in-situ SD in operational NWP 

at Environmental Canada (since 2000) and currently at ECMWF and JMA;

 Kalman-Filter based DA in NASA’s Land Information System     
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2-DIMENSIONAL OPTIMUM INTERPOLATION

 SD increment at analysis point k ∆SDk is computed as the

weighted average of observed increments ∆SDi surrounding k:

∆SDi is the difference between the observed SD and the first guess SD at       

each observation point i  [ i = 1, N]

The vector of optimum weights at k is given by solving the set of N linear         

equations of the matrix form:  

is correlation matrix of background field errors between all pairs of          

observations

is the correlation vector of background field errors between pairs of 

of observations and analysis point k

is the covariance matrix of observational errors (normalized by the 

background error variance) between all pairs of observations
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2-DIMENSIONAL OPTIMUM INTERPOLATION (CON’T)  

 Correlation coefficients for each term in        and        are computed 

following Brasnett 1999. J of Applied Meteorol.:

is the correlation coefficient between each pair of observations or       

between each observation and analysis point,  rij is the horizontal distance 

between pairs  and         elevation difference  between pairs:

2nd order autoregressive correlation function for distance

α(rij) = A*(1 + crij) exp(- crij)    c = 0.005 km-1 (horizontal scale ≈ 420 km; 

A = 0.73)

Square exponential correlation function for elevation

β(Δzij) =  exp(- (Δzij/h )2)     h  = 450 m        (vertical scale = 450 m)

= (σ2
o/ σ

2
b) X I  where I is the identity matrix and (σ2
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2

b) is the observation error    
variance normalized by the background error variance  (fixed at 0.6 for in-situ data)
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PROJECT STATUS

 Processing Algorithm Completed:

 GFS data processing for snowmelt model to generate first guess SD (IDL); 

 Gridding AMSR2 and GFS data inputs at 12-km resolution (IDL);

 2D-OI Algorithm to produce final product (both Fortran90 and IDL) Product 

generation and evaluation for 2016-2017 winter season; 

 Fortran 90-based 2D-OI algorithm runs much faster,  approx. 5 minutes 

to generate one day of global product output;

 Highly modular and easy to apply in operational applications in the 

future; 

 Inter-comparisons with operational GFS SD product; evaluation with in-

situ data (removed from input).
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Example Evaluation: North America – January 1, 2017

Snow

Depth

Bias

(cm)

RMSE 

(cm)

Analysis 2.1 17.0

First

Guess

2.4 22.0

GFS 3.1 18.0

Snow

Depth

Bias

(cm)

RMSE 

(cm)

Analysis 1.9 29.0

First

Guess

-5.7 27.0

GFS 5.2 23.0

Elevation > 1000 m Elevation <= 1000 m 

First Guess Analysis

GFS
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Example Evaluation: North America – February 1, 2017

Snow

Depth

Bias

(cm)

RMSE 

(cm)

Analysis 3.4 19.0

First

Guess

2.7 23.0

GFS 2.5 22.0

Snow

Depth

Bias

(cm)

RMSE 

(cm)

Analysis -2.1 36.0

First

Guess

-10.0 37.0

GFS -32.0 57.0

Elevation > 1000 m Elevation <= 1000 m 

First Guess Analysis

GFS
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Example Evaluation: North America – March 1, 2017

Snow

Depth

Bias

(cm)

RMSE 

(cm)

Analysis 1.2 27.0

First

Guess

0.2 31.0

GFS -2.0 34.0

Snow

Depth

Bias

(cm)

RMSE 

(cm)

Analysis -6.7 54.0

First

Guess

-14.7 56.0

GFS -20.2 60.0

Elevation > 1000 m Elevation <= 1000 m 

First Guess Analysis

GFS
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Overall Results

Snow Depth 

(cm)

n Bias(Mean) Bias(Median) RMSE

Analysis 640 1.7 0.7 16.0

First Guess 640 1.9 1.0 19.1

GFS 640 4.3 3.9 19.8

Snow Depth 

(cm)

n Bias(Mean) Bias(Median) RMSE

Analysis 260 2.7 2.8 23.3

First Guess 260 0.5 0.8 27.3

GFS 260 -3.3 0.4 33.7

Column n Bias(Mean) Bias(Median) RMSE

Analysis 564 3.6 1.2 27.2

First Guess 564 0.80 0.7 30.7

GFS 564 -1.1 0.1 32.7

Jan. 1, 2017

Feb. 1, 2017

Mar. 1, 2017
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System

NOAA 2018 General Modelling and Meeting Fair Exhibit:

A Blended Snow Analysis for Weather and Hydrologic Prediction Models



13

FUTURE WORK

 Optimize scheme parameters to improve seasonal 

accuracy especially over complex terrain;

 Evaluate the impact of satellite data and density of in-

situ stations;

 Upscale SD to 4-km resolution using 4-km IMS snow 

cover extent

 Compare results with other data assimilation 

schemes, e.g. KF-based analyses

 Develop SWE analysis in addition to SD
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