Advancing Forecast Verification and Model Development Efforts through Development of a Flexible Satellite-Based Verification System for the Global Forecasting System

Jason Otkin and Sharon Nebuda
University of Wisconsin-Madison, CIMSS/SSEC

Chris Rozoff
National Center for Atmospheric Research

Ruiyu Sun, Andrew Collard, Emily Liu, and Vijay Tallapragada
NOAA/NCEP/EMC

Michelle Harrold and Ligia Bernardet
Developmental Testbed Center

Lucas Harris and Shian-Jiann Lin
Geophysical Fluid Dynamics Laboratory
Project Motivation

- Accurate depiction of the cloud and water vapor fields is necessary for NWP models to produce skillful forecasts.
- Cloud and precipitation processes are very complex and often difficult to accurately represent in NWP models.
- Errors in water vapor distribution and interactions between parameterization schemes compound these uncertainties.
- Clouds and water vapor are highly variable in space and time and poorly sampled by conventional observations.
 - Satellite brightness temperatures sensitive to clouds and water vapor can fill in this observing gap.
Project Motivation

• Satellite radiances (visible, infrared, microwave) are the only observations that can provide information about the cloud and water vapor fields over the entire globe

• Use “model-to-satellite” approach to convert model data into simulated brightness temperatures

• Methodology provides an effective way to assess forecast accuracy over large spatial domains

• Provides valuable opportunity to evaluate the performance of parameterization schemes in the GFS and FV3 models
Project Objectives

- Enhance the satellite simulator capabilities of the GSI and CRTM in cloudy situations
 - Made changes to interface so that the effective particle diameters are computed correctly for each cloud species
 - Assisting efforts to evaluate new cloud property lookup tables optimized for the GFDL microphysics
- Rigorously evaluate forecast cloud and water vapor fields through comparisons of observed and simulated satellite brightness temperatures
- Provide guidance to operational model developers concerning which schemes produce the most accurate cloud and water vapor fields
Full Resolution GFS Simulations

- GFS model at T1534 resolution (~13-km resolution)
 - Model simulations performed by Ruiyu Sun (NCEP/EMC)
 - Simulations performed using the WSM6 microphysics parameterization scheme
 - Forecasts were generated for several days during July and December 2014 prior to start of this project

- Simulated satellite brightness temperatures generated using the GSI in “single-cycle” mode
 - Provides collocated observed and simulated brightness temperatures for both GEO and LEO satellites
Example of Model Forecast Bias

- GOES-15 imagery
- Water vapor band in top panels, with window band in bottom panels
- 24 hour forecast valid at 00 UTC on 28 July 2014
- Moist bias in upper troposphere
- Upper level clouds are too warm
- Clouds are too homogeneous
Histograms Showing Model Forecast Biases

- Water vapor band in top panels, with window band in bottom panels
- 24-hr forecasts from 10 days in July
- Leftward shift of red line indicates systematic moist bias in upper troposphere
- Window band brightness temps were more accurate
• Analysis method most useful for BT < 270 K

• Some forecast skill in upper-level clouds up to 120 hours
• According to FSS, forecast skill remains relatively constant until the 196-hr forecast; however, the correlations decrease with time.

• Overall, forecast skill is low due to stochastic nature of convection.
Correlations show that the cloud field is more accurately forecast in the mid-latitudes than it is in the tropics.

Higher correlations at all forecast lead times in mid-latitudes likely due to greater predictability of extratropical cyclones.
• Observed satellite imagery has smooth appearance; however, forecast imagery has discrete jumps in it.

• Forecast cloud top temperatures are reasonable if you average across the jumps; however, the jumps themselves are not realistic.
Stratocumulus Cloud Field Errors

Forecast Start 2014070300
Valid 2014070306

10.7μm Brightness Temperature

• Locations of jumps in brightness temperatures exactly match contours of where the cloud top pressure levels change

• Jumps are directly related to some artifact that arises when the cloud top transitions from one model sigma level to another
Stratocumulus Cloud Field Errors

Forecast Start 2014070300
Valid 2014070306

• Cloud water and rain water exhibit jumps along these boundaries
• Black line denotes cross-section location shown in next slide
Stratocumulus Cloud Field Errors

- Wind flow is from right to left across the cross-section
- Could be problem with planetary boundary layer scheme
- Illustrates how satellite-based verification can detect model errors
Collaborations with GFDL

• CIMSS developed a stand-alone CRTM driver to compute simulated brightness temperatures using FV3 output

 • CRTM V2.3

 • netcdf I/O

 • MPI parallelization

 • All sensors supported by CRTM can be simulated, except that polar orbiting sensors have fixed viewing angle

 • Delivered to GFDL in April 2018

 • GFDL FV3 group is actively using this software
Forecast cloud fields are realistic in the FV3 simulations when using the GFDL microphysics.

Much more extensive verification is necessary.
Future Plans

• Use remaining funds to begin evaluating the accuracy of the cloud and water vapor fields in FV3 forecasts run at GFDL

• Assist efforts at EMC (Emily Liu) to evaluate the impact of using cloud property lookup tables in the CRTM that have been optimized for use with the GFDL microphysics

• Assist efforts by the Model Evaluation Group (MEG) to assess the accuracy of FV3-GFS forecasts