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Spatiotemporal distribution of cyclone
clustering

Influences of atmospheric blocking and
phases/amplitudes of the major

teleconnection indices, ENSO and the MJO

Composite/case study analyses of cyclone
clustering events

regime change predictability horizons
associated with cyclone clustering events;

Weather regime classification &
transition probabilities

CFSv2 model climate, integration

Weather regime classification

Arctic air mass generation and
modification

life cycles of the MJO

Poleward heat and moisture transports of
subtropical air masses

e Multiscale & multi-institutional process
integration -> weeks 1-4 prediction tool
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J&& Cyclone Clustering - SUNYA

 Northern Hemisphere atmosphere predictability on sub-seasonal time
scales (1-4 weeks) depends significantly on the structure, position, and
evolution of the North Pacific Jet Stream (NPJ) waveguide.

 The susceptibility of the NPJ to external perturbations is a function of the
phase and amplitude of ENSO on interannual time scales, the phase and
amplitude of the MJO on subseasonal time scales, and the frequency of
transient tropical, midlatitude, and polar disturbances that interact with
the NPJ on synoptic time scales.

 NPJ waveguide perturbations can result in the formation of downstream
propagating Rossby wave trains including clustered cyclone events that
may lead to extreme weather event (EWE) occurrences.

e Selected persistent large-scale circulation regimes may be especially
conducive to the occurrence of clustered cyclone events and EWEs.



Cyclone clustering (ERA-Interim; Hodges)

Frequency and
distribution of
cyclone cluster
events

associated with
large-scale flow
patterns is
contingent

upon the
orientation and
position of the -
midlatitude jets
over the ATL
and PAC.
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Average cyclone clusters for 1979-2014



Cyclone Clusters Vs. PNA
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Cyclone Clusters Vs. PNA

clusters form in
favored northerly
track across the ATL
and in the central N
PAC during neg PNA
phase. "
clusters form in
favored southerly
track across the ATL
and in the Gulf of
Alaska during pos
PNA phase.
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Difference between positive PNA and negative PNA



Cyclone Clusters Vs. Oceanic Nino Index
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Cyclone Clusters Vs. Oceanic Nino Index
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Average DJF ONI value of (<=-1) (left) and (>=1) (right) of two or more clustered cyclones



Cyclone Clusters Vs. Oceanic Nino Index

clusters favor NE
PAC and NE ATL
during El-Nino years.

clusters occur
preferentially along
a southern storm
track over North
America during El-
Nino years.

clusters favor north-
central PAC and
north-central ATL
during La-Nina
years.
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Cyclone Clusters Vs. NAO
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Cyclone Clusters Vs. NAO
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Cyclone Clusters Vs. NAO

clusters during both

pos and neg NAO clusters form

in favored
phases favor the northerly track
north-central PAC. across the ATL

and southerly
track across
the PAC during
positive NAO
phase.

clusters form in
favored southerly
track across the ATL [
and northerly traCk 165°E
across the PACduring | | | =
negative NAO phase. =\ | ~ef
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Regime classifications
and prediction

 Define a regime-based metric

e Assess this regime-based metric’s
relevance to extreme sensible weather
over North America

e |ldentify state-of-the-art prediction
capability at short- and medium ranges



Low-variance regime example
The cold-season of 1985-86

1800 UTC, 13 December 1985

1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa)
19851213_18z (peak of low regime)
90E

1986 djf EPac PNA and ano of 7-day sdv of diff from trend
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Low-variance regime of December 1985 (a pineapple express case);
Roberge et al. 2009
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High-variance regime example
The cold season of 1990-91

1800 UTC, 30 January 1991

1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa)
19910130_18z (peak of high regime)
90E

1991 djf EPac PNA and ano of 7-day sdv of diff from trend
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High-variance regime case of Jan-Feb 1991



Extreme Precipitation

Pineapple express/atmospheric rivers (low variance)

1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa)
peak of low regimes composite

1. Roberge et al. (2009): four
cases

2. Lackmann et al. (1998): one
case

3. Lackmann et al. (1999): one
case (17-18 Jan. 1986)

4. Turner and Gyakum (2011):
one case of Arctic air mass
generation

40120100 80 60 40 20 20 40 60 8O 100 120 140
Low-variance regimes (composite;
18 cases; SLP and 1000-500 hPa
thickness anomaly)



Extreme Precipitation

Long-duration freezing rain events (high variance)

1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa)
19821225_06z (peak of high regime)
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McCray (2018) case of long-duration
freezing rain events (Dec. 82)

Wood (2015) case of extreme 850-
hPa equivalent potential
temperature
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0600 UTC, 25 December 1982; peak
of high-variance regime



Extreme temperatures

Arctic air mass generation (high variance)

1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa) 1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa)
19800109_18z (peak of high regime) peak of high regimes composite
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Bliankinshtein (2018) case of extreme

Arctic air mass generation (3-9 Jan. (composite; 10 cases; SLP and
1980) 1000-500 hPa thickness anomaly)
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Regime Prediction (Forecast “fractures”)

Using the Global Ensemble Forecasting System (GEFS;
Hamill et al. 2013) archive, we identify successive
forecast cycles, separated by 24 h, in which the
difference in forecasted anomalous standard deviation
of the height at verification time during a regime
exceeds the 90" percentile.

GEFS control reforecast, Dec 4-Dec 5, 1985 fracture
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Forecast fracture (282/306 h) in low-variance regime of Dec 1985

(12/13 days)

1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa)
, 19851204 00z {0, GEFS control ry
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Forecast fracture (180/204 h) in high-variance regime of Jan-Feb 1991

(7.5/8.5 days)

1000-500 hPa thickness and anomaly (m) and sea-level pressure (hPa)
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.——. Regime Classificiation - SOM
e Compare weather regime classifications
defined via several methods (SOM using
theta on the DT; SUNYA results via clustering;
McGill results via GC metric) and evaluate
predictability

e Evaluate predictive utility of regime
transition probabilities

e Evaluate robustness of CFSv2 model climate



Statistical Significance of 30
Day Transitions

. Significant 30 Day Transition Probabilities Based on a Bootstrap Test

W e * Bootstrap test of the

e | statistical significance:

—high transitions are

significant at the 95%

- ‘ level.

-t - P — low transitions are
also statistically

significant.
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What do these regimes look like?

Mean Regime 23 Mean Regime 24

Transitions into...




Recurrent Regime Pathways

Return Flow Regime Tracks == o No ”preferred”
f % = pathway enroute

s to recurrence.

e Whatis

| connection to

Plaut and

= m e e ey Vautrad (1993)?



Presenter
Presentation Notes
Given that there are recurrent flows, it is of interest to determine whether there are preferred pathways or “tracks” that are followed during the 30 day period. A subset was taken from the data only including cases where the initial regime was within regimes 23 to 27, and ended at any regime in that same grouping.  


Index

Links to AO, PNA, and NAO

Spread of AO (Blue), NAO (Red), and PNA (Green) on Days with Correlation to

Leading 5 PCs

Regime Group

27

AD
NAO
PNA

28 29

Cluster 1
PNA is positive

Cluster 5, 16
PNA negative
NAO, AO positive

Cluster 8
PNA negative?
NAO, AO negative
16 - all positive?
Cluster 16
PNA positive?
NAO, AO positive

Others variable



i Ongoing and future work —
MILWAUKEE Predictive tools
* Integration of individual pieces of predictive
information from U at Albany, McGill, UNM

e Variety of effective spatio-temporal
approaches exist
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... and we can make this adaptive!

Note: CSl is computed from prior 100 forecast cycles

CSl and CO frequency
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2. Evolutionary arms race- coevolution can occur
In competitive relationships

-

The crab is the Matural selection favors Through natural selection, In response, natural selec-

natural predator snails with thicker shells crabs evolve more powerful tion favors snails with even

of the snail. and spines. claws that can pierce the thicker shells and spines.
snails’ thick, spiny shells.

e

sl
. 1 s wg




WaTor Simulation Window

Predator-prey leads to
clustering and thus might
produce more genetic
diversity over the domain

(Dewdney 1984).



Ecosystem Dynamics

Attribute Prey Algorithms Predator Algorithms
Location Initially randomly dispersed on 100x100 grid Initially randomly dispersed on 100x100 grid
Structure f(IF-THEN, VARS) L1+L2+L3+L4+L5 f(IF-THEN, VARS) L1+L2+L3+L4+L5

Food

WVariables distributed on 100x100 grid as food for prey. If
consumed on one iteration, takes another iteration to
“reprow.” (overgrazing). Can build over time to max of 5.

Predator accumulates food reserves with each prey
consumed and depletes this only through spawning.

Feeding
strategy

Seek food or avoid predator within 3x3 neighborhood with
probability @, = f(RMSE for T,C51 for CO)

Seek prey at location where maximum prey exist within
the 3x3 neighborhood with probability
s = f(RMSE for T,CSI for CO)

Hunger If food at grid location does not contain variables used by | If predator 15 hungry (has no accumulated food reserves) it
prey algorithm, then prey does not feed. If prey is hungry | may die with probability f = f(1 — a,)
(has no accumulated food reserves) it may die with
probability f = f(1 — a,)

Aping If prey has existed for at least N iterations (8 for T, 4 for If predator has existed for at least 7 iterations then it may

Breeding

CO) then it may die with probability ¥y = f(1 — «;).
Additionally for CO, prey always dies after 8 iterations.

die with probability ¥ = f(1 — @.). Always dies after 14
iterations.

If prey has at least 2 accumulated food reserves, then prey
produces one clone of itself within 3x3 neighborhood ,
depleting food reserves by 2. The clone may have a
mutation with probability 1 — &, . There is a 10% chance
of producing an atavism. (carrying capacity is dictated by
predator-prey-food dynamics).

If predator has at least 3 accumulated food reserves, then
predator produces one clone of itself within the 3x3
neighborhood, depleting food reserves by 2. The clone
may have a mutation with probability 1 — @,. There iz a
10% chance of producing an atavism. (carrying capacity is
dictated by predator-prey-food dynamics).

If there is another algorithm of either type within the 3x3
neighborhood which has a higher performance level, then
the worse-performing algorithm “learns™ by copying at
random one of the 5 lines from the better algorithm.

If there is another algorithm of either type within the 3x3
neighborhood which has a higher performance level, then
the worse-performing algorithm *learns™ by copying at
random one of the 5 lines from the better algorithm.

Table 1: Overview of the rules governing prey and predator behaviors on the 100x100 ecological grid. See text for details.
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Impact of Co-evolution

« Deterministic 72h T forecasts
Improves RMSE to 2.95°F
- over standard EP by 3.0% (averaged by grid)
- over RFv2 by 11.4% (averaged by grid)

e Probabilistic 72h T forecasts
Improves Ranked Probability Score
- over standard EP by 3.6%
- over RFv2 by 6.4 %
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Presentation Notes
High impact event
Lack of improvement in intensity, especially in short term
Mention RI and RW here, and connect to short term errors
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