

MAIN GOALS

Starting from the operational Global Ocean Data Assimilation System (GODAS) baseline:

- 1. Apply a new scalable ensemble-based ocean data assimilation approach
- 2. Assimilate new observation data types and improve assimilation of present data
- 3. Integrate new models at higher resolution

all for implementation in the Next Generation Global Prediction System

TO DATE:

- Oceanic Local Ensemble Transform Kalman Filter (Ocean-LETKF) system (Penny et al., 2013)
- Hybrid-Gain assimilation method (Penny 2014)
- Hybrid Global Ocean Data Assimilation System (Hybrid-GODAS) at NCEP (Penny et al., 2015)
- 21-Year Hybrid GODAS Reanalysis (Penny et al., in preparation)

21-YEAR HYBRID-GODAS REANALYSIS

TEMPERATURE AND SALINITY (O-F) RMSD AND BIAS REDUCED USING THE HYBRID-GODAS (5-DAY FORECASTS)

Primary Goal: forward-operator based approach

Observed field:

Sea Surface Temperature (SST)

Sea Surface Salinity (SSS)

Temperature/Salinity Profiles (T/S)

Sea Surface Height (SSH)

Present data:

Relaxation to OI analysis

Relaxation to climatology

Argo/XBT/TAO/TRITON/etc. interpolated to model levels

AVISO TOPEX/Poseidon/ Jason1/Jason2 Altimetry

Primary Goal: forward-operator based approach

Observed Present

field: data:

SST Relaxation to OI analysis

SSS Relaxation to climatology

T/S Profiles

Argo/XBT/TAO/
TRITON/etc. at model levels

SSH AVISO Altimetry

Primary Goal: forward-operator based approach

Observed	Present	Phase 1
<u>field</u> :	<u>data</u> :	<u>data</u> :
SST	Relaxation to OI analysis	SST (L2, along track bias corrected)
SSS	Relaxation to climatology	SSS (L3)
T/S Profiles	Argo/XBT/TAO/ TRITON/etc. at model levels	Full-depth Argo
SSH	AVISO Altimetry	SLA (L2, all altimeter satellites, along track)

Primary Goal: forward-operator based approach

Observed <u>field</u> :	Present <u>data</u> :	Phase 1 <u>data</u> :	Phase 2 <u>data</u> :
SST	Relaxation to OI analysis	SST (L2, along track bias corrected)	SST (L1 and SVP drifters, via NSST model in GFS)
SSS	Relaxation to climatology	SSS (L3)	SSS (L2 orbital/ swath data)
T/S Profiles	Argo/XBT/TAO/ TRITON/etc. at model levels	Full-depth Argo	Full-depth Argo. Model mapped to in situ temperature and salinity
SSH	AVISO Altimetry	SLA (L2, all altimeter satellites, along track)	L1-type data to constrain Sea Level Anomaly (SLA)

Primary Goal: forward-operator based approach

Observed <u>field</u> :	Present <u>data</u> :	Phase 1 <u>data</u> :	Phase 2 <u>data</u> :
SST	Relaxation to OI analysis	SST (L2, along track bias corrected)	SST (L1 and SVP drifters, via NSST model in GFS)
SSS	Relaxation to climatology	SSS (L3)	SSS (L2 orbital/ swath data)
T/S Profiles	Argo/XBT/TAO/ TRITON/etc. at model levels	Full-depth Argo	Full-depth Argo. Model mapped to in situ temperature and salinity
SSH	AVISO Altimetry	SLA (L2, all altimeter satellites, along track)	L1-type data to constrain Sea Level Anomaly (SLA)
Surface winds		O-F's from diag files	
SVP Drifter			Lagrangian DA of drifter positions

And more: ocean color, gravity, near surface atmospheric measurements

Primary Goal: forward-operator based approach

Ok	oserved <u>field</u> :	Present data:	Phase 1 <u>data</u> :	Phase 2 <u>data</u> :	
	SST	Relaxation to OI analysis	SST (L2, along track bias corrected)	SST (L1 and SVP druers, via NSST model in GFS)	
	SRET	RIEVALion to climatology	\$\$\$.(L3) DIRI	ECT OBSERVATION	
Т	/S Profiles	Argo/XBT/TAO/ TRITON/etc. at model levels	Full-depth Argo	Full-depth Argo. Mo <mark>del mapp</mark> ed to in situ temperature and salinity	
	SSH	AVISO Altimetry	SLA (L2, all altimeter satellites, along track)	L1-type data to constrain Sea Level Anomaly (SLA)	
Sur	face winds		O-F's from diag files		
	CVP Driftor			Lagrangian DA of drifter	

And more: ocean color, gravity, near surface atmospheric measurements

positions

MODEL PLAN

ALIGNING WITH THE **NEMS** DEVELOPMENT, WE SHIFT FROM THE OPERATIONAL 1/2° CFS.V2 OCEAN (MOM4P1) TO 1/4° GLOBAL RESOLUTION FOR TWO OCEAN MODELS:

MODEL PLAN

ALIGNING WITH THE **NEMS** DEVELOPMENT, WE SHIFT FROM THE OPERATIONAL 1/2° CFS.V2 OCEAN (MOM4P1) TO 1/4° GLOBAL RESOLUTION FOR TWO OCEAN MODELS:

RTOFS

MOM6-LETKF (1/4° GLOBAL) Both have general vertical coordinates and require treatment of variable thickness layers.

HYCOM-LETKF (1/4° GLOBAL)

HYBRID-GODAS 3DVAR/LETKF

HYBRID-NCODA 3DVAR/LETKF

- The source code is being transferred to a newly established UMD Github account for UMD/NCEP collaboration and future open source development
- Concurrent Code updates:
 - Adoption of style guide for consistency and readability
 - Reorganization for improved modularity and adaptability
 - Elaboration of inline and external written documentation
 - Optimization of code and process flow for improved scalable computational performance
- At completion, a version 1.0 release of the Ocean-LETKF will be made publicly available on Github as a community code

CONCLUSION

Reiterating main goals to support NGGPS:

- 1. Implement *new ensemble-based* ocean data assimilation approach
- 2. Assimilate new observational data types and improve assimilation of existing data
- Integrate new NEMS-compatible ocean models, at higher resolution

Contact: Steve.Penny@noaa.gov