The subseasonal-to-seasonal variability of Northern Hemisphere midlatitudes and its influence on forecasts for weeks 3-4

Cristiana Stan^{1,2}, Laura Ciasto³, Dan Harnos³, Michelle L'Heureux³, Eric Maloney⁴ and David Straus^{1,2}

¹ Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA ²Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, VA ³NOAA/Climate Prediction Center, College Park, MD ⁴Department of Atmospheric Science, Colorado State University, Fort Collins, CO

Outline

- Brief project description
- Scientific motivation
- > Dynamical models results
- Statistical model results
- Future work

Project Description

TORR	Clima	lational Wea ate Pred	other Service	ter			www.nws.noaa.gov	Ot
s	ite Map	News	Organization		Search Enter Search	Here Go		
Search the CPC CPC search Go	HOME> Ou	tlook Maps> Weel	veek 3-4 Outlooks	ıtlooks		_		•
General Information Temp Product description Prcp Product description		Val	id: 05 Aug 2017 to 1 Updated: 21 Jul	8 Aug 2017 2017		_		
On Process & Format		Please provide comments using the online survey.						
Forecast Tools Dynamical model guidance Statistical model	Ter	Temperature Probability			Precipitation Probability (Experimental)			
				_				
	Dynamical Models				Statisti	ical Mode	ls	
	CFS	GEF	S ECMWF			MLR*		

Objectives

- Improve the MLR
- Develop advanced diagnostics to be applied to the dynamical models output

Scientific Motivation

Northern Hemisphere Midlatitude Variability

Flow Regimes

Intra-seasonal and Seasonal Oscillations

45-day Oscillation (PNA)

PNA

Pacific Trough

60

90

120

120-day Oscillation (NAO/AO)

Contours: Cluster centroids based on 5-day running means of Z500 for DJF from reanalyses.

Arctic High

Shading: Shift in 300 hPa storm tracks (significant using bootstrap)

How to use this potential source of predictability?

Atmospheric Rivers

Dynamical Models (CFSv2 5-member Ensemble)

- CFS reforecast
- 5 Ensemble members
- Initial condition: 01Jan2012

Reanalysis flow regime

Ensembles with pattern correlation > 0.5

Ensembles with pattern correlation > 0.4

Statistical Model

TORR	National Weather Ser Climate Prediction	rvice Center		www	nws.noaa.gov		
Sit	e Map News Or	ganization	Search Enter Search H	iere Go			
Search the CPC CPC search Go	HOME> Outlook Maps> Week 3-4 Outloo Week 3	⊷ -4 Outlooks					
General Information Temp Product description Prcp Product	Valid: 05 Aug Update	2017 to 18 Aug 2017 ed: 21 Jul 2017					
On Process & Format	Please provide comme	ents using the <u>online</u>	survey.				
Forecast Tools Dynamical model guidance Statistical model	Temperature Probability	Precipitation (Experin	Probability nental)				
	Dynamical Models	5	Statisti	cal Models			
	CFS GEFS E	CMWF		MLR*		*Ha	arnos et al. 2016

Multi-linear Regression Model (MLR)

Predictors:

- RMM1 and RMM2 for MJO
- 2-week mean Nino 3.4 anomaly for ENSO
- Daily index for linear long-term trend
- Predictands:
 - 2-meter Temperature anomalies
 - Precipitation anomalies

Operations

Predictors:

- RMM1 and RMM2 for MJO
- 2-week mean Nino 3.4 anomaly for ENSO
- Daily index for linear long-term trend
- Daily index for the 45-day oscillation
- Daily index for the 120-day oscillation
- Predictands:
 - 2-meter Temperature anomalies
 - Precipitation anomalies

Off-line

All Phases of ENSO and Phase 6 of MJO

Correlation between observed and predicted 2m temperature anomalies

The impact of 120-day oscillation predictor on the 2-meter temperature

Heidke Skill Score aggregated over US (including Alaska) grid points

 $HSS = \frac{Hits - Expected}{Total - Expected}$

Statistical significance: percentage of grid points across the US that exceed the 95% significance test based on the F-stat

The impact of 120-day oscillation predictor on precipitation

 The low skill suggests that precipitation outlook may instead be better focused on extreme values rather than total anomalies.

The impact of 120-day oscillation predictor on 2m temperature

Correlation between the observed and predicted 2m temperature anomalies

Variance explained by the 4-predictor vs. 3-predictor MLR model

The Next Steps

- Explore various options for expending the operational MLR model to account for oscillatory modes describing the intra-seasonal and seasonal variability of the Northern Hemisphere midlatitudes
- The impact of midlatitude variability on precipitation forecast skill will continue to be evaluated
- The flow regimes diagnostics will be refined and developed into a prototype for operational workflow

Thank you!

The impact of 120-day oscillation predictor on 2m temperature

Heidke Skill Score aggregated over US (including Alaska) grid points

 $HSS = \frac{Hits - Expected}{Total - Expected}$

Statistical significance: percentage of grid points across the US that exceed the 95% significance test based on the F-stat

The impact of 120-day oscillation predictor on precipitation

D

• The low skill suggest that precipitation outlook may instead be better focused on extreme values rather than total anomalies.