The Development of the North Pacific Jet Phase Diagram at the NCEP-WPC as a Tool to Characterize the Upper-Tropospheric Flow Pattern

Lance F. Bosart, Daniel Keyser, and Andrew C. Winters

Department of Atmospheric and Environmental Sciences University at Albany, State University of New York, Albany, NY 12222

> NGGPS / MAPP PI Meeting College Park, MD 2–3 August 2017

This work is supported by NOAA Grant NA15NWS4680006

Motivation

 Previous work highlighted the considerable North Pacific Jet (NPJ) variability during the medium-range period that characterizes the antecedent environments associated with continental U.S. extreme temperature events.

Motivation

- Previous work highlighted the considerable North Pacific Jet (NPJ) variability during the medium-range period that characterizes the antecedent environments associated with continental U.S. extreme temperature events.
- This NPJ variability motivated the development of the NPJ phase diagram as an objective tool to characterize the instantaneous state of the upper-tropospheric flow pattern over the North Pacific.

Motivation

- Previous work highlighted the considerable North Pacific Jet (NPJ) variability during the medium-range period that characterizes the antecedent environments associated with continental U.S. extreme temperature events.
- This NPJ variability motivated the development of the NPJ phase diagram as an objective tool to characterize the instantaneous state of the upper-tropospheric flow pattern over the North Pacific.
- Consideration of the NPJ phase diagram offers the potential to increase confidence in operational probabilistic temperature forecasts during the medium-range period.

The Development of the NPJ Phase Diagram

- Removed the mean and the annual and diurnal cycles from 6-hourly, 250-hPa zonal wind data from the CFSR (1979–2014) (Saha et al. 2014)
- Restricted data to the cool season (Sept.–May)
- Performed an EOF analysis on the zonal wind anomalies within the domain: 10–80°N ; 100°E–120°W

Analysis techniques and resultant EOF patterns are consistent with related work on the North Pacific Jet:

- Athanasiadis et al. (2010)
- Jaffe et al. (2011)
- Griffin and Martin (2017)

Sept.–May 250-hPa zonal wind EOF 1 pattern: shading

– EOF 1: Jet Retraction

Sept.–May 250-hPa zonal wind EOF 1 pattern: shading

– EOF 1: Jet Retraction

Mean Sea-Level Pressure, 1000–500-hPa Thickness, 850-hPa Temp. Anomalies: Jet Extension

Mean Sea-Level Pressure, 1000–500-hPa Thickness, 850-hPa Temp. Anomalies: Jet Retraction

Mean Sea-Level Pressure, 1000–500-hPa Thickness, 850-hPa Temp. Anomalies: Equator. Shift

This work is supported by NOAA Grant NA15NWS4680006

Real time | Archive | Verification | Composites | About

Phase Diagram (left): Shows the GFS analysis trajectory over the previous 10 days in black with diamonds corresponding to a position in the phase diagram at 00Z on the day labeled to the upper-right of its respective diamond. The red and blue symbols show the forecasted GFS and GEFS ensemble mean trajectories, respectively, within the phase diagram over the next 9 days with diamonds corresponding to a position in the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed in the title.

Synoptic Maps (right): Depicts GFS deterministic forecasts of (1) 250-hPa wind speed, geo. heights, and standardized geo. height anomalies, (2) 500-hPa relative vorticity, geo. heights, and standardized geo. height anomalies (3) mean sea level pressure, 1000-500-hPa thickness, and 850-hPa standardized temperature anomalies, and (4) 24-h accumulated precipitation. The 24-h forecasted accumulated precipitation is also used as 'verification' in Days -10 to 0.

Deterministic Forecast | Probabilistic Forecast | Ens. Spread Forecast | D(prog)/Dt

Arrow keys for navigation Space = play/pause Swipe for navigation on touchscreen																				
250-hPa Jet/Hght/Hght'	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9
500-hPa Vort/Hght/Hght'	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9
MSLP/Thick/Temp'	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9
24-h Accum. Precip	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9

This work is supported by NOAA Grant NA15NWS4680006

Real time Archive Verification Composites About

Phase Diagram (left): Shows the GFS analysis trajectory over the previous 10 days in black with diamonds corresponding to a position in the phase diagram at 00Z on the day labeled to the upper-right of its respective diamond. The red and blue symbols show the forecasted GFS and GEFS ensemble mean trajectories, respectively, within the phase diagram over the next 9 days with diamonds corresponding to a position in the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed in the title.

Synoptic Maps (right): Depicts GFS deterministic forecasts of (1) 250-hPa wind speed, geo. heights, and standardized geo. height anomalies, (2) 500-hPa relative vorticity, geo. heights, and standardized geo. height anomalies (3) mean sea level pressure, 1000-500-hPa thickness, and 850-hPa standardized temperature anomalies, and (4) 24-h accumulated precipitation. The 24-h forecasted accumulated precipitation is also used as 'verification' in Days -10 to 0.

 Deterministic Forecast
 Probabilistic Forecast
 Ens. Spread Forecast
 D(prog)/Dt

 Arrow keys for navigation
 Space = play/pause
 Swipe for navigation on touchscreen

 250-hPa Jet/Hght/Hght'
 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

 500-hPa Vort/Hght/Hght'
 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

 MSLP/Thick/Temp'
 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

 24-h Accum. Precip
 10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9

This work is supported by NOAA Grant NA15NWS4680006

Real time Archive Verification Composites About

Phase Diagram (left): Shows the GFS analysis trajectory over the previous 10 days in black with diamonds corresponding to a position in the phase diagram at 00Z on the day labeled to the upper-right of its respective diamond. The red and blue symbols show the forecasted GFS and GEFS ensemble mean trajectories, respectively, within the phase diagram over the next 9 days with diamonds corresponding to a position in the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed in the title.

Synoptic Maps (right): Depicts GFS deterministic forecasts of (1) 250-hPa wind speed, geo. heights, and standardized geo. height anomalies, (2) 500-hPa relative vorticity, geo. heights, and standardized geo. height anomalies (3) mean sea level pressure, 1000-500-hPa thickness, and 850-hPa standardized temperature anomalies, and (4) 24-h accumulated precipitation. The 24-h forecasted accumulated precipitation is also used as 'verification' in Days -10 to 0.

Deterministic Forecast | Probabilistic Forecast | Ens. Spread Forecast | D(prog)/Dt

Arrow keys for navigation Space = play/pause Swipe for navigation on touchscreen																				
250-hPa Jet/Hght/Hght'	-10	-9	-8 -7	7 -6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
500-hPa Vort/Hght/Hght'	-10	-9	-8 -7	/ -6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
MSLP/Thick/Temp'	-10	-9	-8 -7	/ -6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
24-h Accum. Precip	-10	-9	-8 -7	/ -6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	

This work is supported by NOAA Grant NA15NWS4680006

Real time | Archive | Verification | Composites | About

Phase Diagram (left): Shows the GFS analysis trajectory over the previous 10 days in black with diamonds corresponding to a position in the phase diagram at 00Z on the day labeled to the upper-right of its respective diamond. The red and blue symbols show the forecasted GFS and GEFS ensemble mean trajectories, respectively, within the phase diagram over the next 9 days with diamonds corresponding to a position in the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed to the upper-right of its respective diamond. The green diamond shows the position within the phase diagram at 00Z on the day listed in the title.

Synoptic Maps (right): Depicts GFS deterministic forecasts of (1) 250-hPa wind speed, geo. heights, and standardized geo. height anomalies, (2) 500-hPa relative vorticity, geo. heights, and standardized geo. height anomalies (3) mean sea level pressure, 1000-500-hPa thickness, and 850-hPa standardized temperature anomalies, and (4) 24-h accumulated precipitation. The 24-h forecasted accumulated precipitation is also used as 'verification' in Days -10 to 0.

Deterministic Forecast | Probabilistic Forecast | Ens. Spread Forecast | D(prog)/Dt

Arrow keys for navigation Space = play/pause Swipe for navigation on touchscreen																					
250-hPa Jet/Hght/Hght'	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
500-hPa Vort/Hght/Hght'	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
MSLP/Thick/Temp'	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	
24-h Accum. Precip	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	+1	+2	+3	+4	+5	+6	+7	+8	+9	

GEFS Forecast Skill in the Context of the NPJ Phase Diagram

NPJ Phase Diagram Forecast Skill

Determined the position within the NPJ phase diagram for all 0-h forecasts during Sept.—May 1984—2014 in the GEFS Reforecast V2 (Hamill et al. 2013)

Forecasts initialized during jet retractions exhibit significantly larger errors than jet extensions and poleward shifts in the 168–216-h forecast period

GEFS Reforecasts verifying within a particular NPJ regime

Circles on a particular line indicate statistically significant differences at the 99% confidence level with respect to another NPJ regime

Forecasts verifying during equatorward shifts and jet retractions exhibit significantly larger errors than jet extensions and poleward shifts in the 96–216-h forecast period

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

(1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts

(2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

(1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts

(2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Hypothetical Best Forecast

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

- (1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts
- (2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Represents a forecast with negligible ensemble mean error

(1) Ens. Mean error ≈ 0 \checkmark

Hypothetical Best Forecast

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

- (1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts
- (2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Represents a forecast with negligible ensemble member error

(1) Ens. Mean error ≈ 0 \checkmark

(2) Avg. Ens. Member error ≈ 0

Hypothetical Best Forecast

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

(1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts

(2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Hypothetical Intermediate Forecast

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

- (1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts
- (2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Represents a forecast with negligible ensemble mean error

(1) Ens. Mean error ≈ 0 ✓

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

- (1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts
- (2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Represents a forecast with considerable ensemble member error

- (1) Ens. Mean error ≈ 0
- (2) Avg. Ens. Member error >> 0 🗙

Hypothetical Intermediate Forecast

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

(1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts

(2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Hypothetical Worst Forecast

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

- (1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts
- (2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Represents a forecast with considerable ensemble mean error

(1) Ens. Mean error >> 0 🗙

Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst medium-range forecasts

<u>Criteria</u>: Forecasts must rank in the top/bottom 10% in terms of *both*:

- (1) The average GEFS ensemble <u>mean</u> error in the Day 8 and 9 forecasts
- (2) The average GEFS ensemble <u>member</u> error in the Day 8 and 9 forecasts

Represents a forecast with considerable ensemble member error

(1) Ens. Mean error >> 0 X
(2) Avg. Ens. Member error >> 0 X

Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst medium-range forecasts

	PC1 _{start}	PC2 _{start}	Avg. ΔPC1	Avg. ΔPC2	Avg. 10-d Traj. Dist.
Best Forecasts (N=475)	0.09	0.04	0.09	0.16	3.50 PC units
Worst Forecasts (N=763)	-0.18	-0.08	-0.01	-0.21	4.33 Poleward Shift

let Retraction

-2

Worst

PC 2

et **Extension**

2

Best

Equatorward Shift

PC 1

- The best forecasts typically initialize more frequently within jet extension and poleward shift NPJ regimes
- The worst forecasts typically initialize more frequently within jet retraction and equatorward shift NPJ regimes

Best/Worst NPJ Phase Diagram Forecasts

Comparison between the periods characterized by the best/worst medium-range forecasts

	PC1 _{start}	PC2 _{start}	Avg. ΔPC1	Avg. ΔPC2	Avg. 10-d Traj. Dist.
Best Forecasts (N=475)	0.09	0.04	0.09	0.16 Poleward Shift	3.50 PC units
Worst Forecasts (N=763)	-0.18	-0.08	-0.01	-0.21 Equatorward Shift	4.33 PC units

- The best forecast periods are typically characterized by poleward shifts over the next 10 days and anomalously short trajectories within the NPJ phase diagram
- The worst forecast periods are typically characterized by equatorward shifts over the next 10 days and anomalously long trajectories within the NPJ phase diagram

Discussion

- Forecasts initialized/verifying during jet extensions and poleward shifts are characterized by lower errors than those initialized/verifying during jet retractions and equatorward shifts.
- The best NPJ phase diagram forecasts are most frequently initialized during jet extensions and poleward shifts and are typically characterized by periods with shorter trajectories through the NPJ phase diagram.
- A topic of future research is to explain from a synoptic-dynamic perspective why jet extensions and poleward shifts exhibit greater forecast skill compared to jet retractions and equatorward shifts.

NPJ Phase Diagram Web Interface

 A web interface has been developed and implemented at WPC that offers real time NPJ phase diagram forecasts and NPJ regime composites.

http://www.atmos.albany.edu/facstaff/ awinters/realtime/About_EOFs.php

Contact: <u>acwinters@albany.edu</u>

Collaborators: Mike Bodner (WPC), Arlene Laing (NOAA), Dan Halperin (WPC), Josh Kastman (WPC), and Sara Ganetis (WPC)

References

- Athanasiadis, P. J., J. M. Wallace, and J. J. Wettstein, 2010: Patterns of wintertime jet stream variability and their relation to the storm tracks. *J. Atmos. Sci.*, **67**, 1361–1381.
- Griffin, K. S., and J. E. Martin, 2017: Synoptic features associated with temporally coherent modes of variability of the North Pacific jet stream. *J. Climate*, **29**, in press.
- Hamill, T. M., G. T. Bates, J. S. Whitaker, D. R. Murray, M. Fiorino, T. J. Galarneau, Y. Zhu, and W. Lapenta, 2013: NOAA's Second-Generation Global Medium-Range Ensemble Forecast Dataset. *Bull. Amer. Meteor. Soc.*, 94, 1553–1565.
- Jaffe, S. C., J. E. Martin, D. J. Vimont, and D. L. Lorenz, 2011: A synoptic climatology of episodic, subseasonal retractions of the Pacific jet. *J. Climate*, **24**, 2846–2860.
- Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System Version 2. J. Climate, **27**, 2185–2208.

Supplementary Slides

NPJ Regime Composites

Determined the position within the NPJ phase diagram at all analysis times in the CFSR at 6-h intervals between Sept.–May 1979–2014

NPJ Regime Composites

Isolated the analysis times during which there was a strong projection onto one of the four NPJ regimes (i.e., >1 PC unit from the origin)

NPJ Regime Composites

Isolated periods during which the NPJ resided within the same quadrant of the NPJ phase diagram for 3 consecutive days

Inter and Intraannual Characteristics of the NPJ Phase Diagram

The NPJ Phase Diagram and ETEs

ETEs during Sept. – May are projected onto the NPJ phase diagram

Each 'x' is the average position within the NPJ phase diagram 3–7 days prior to an ETE

NPJ Regime Frequency by Month

- Poleward and Equatorward Shifts are favored during September
- NPJ regime
 frequencies are
 nearly equivalent
 during all other
 months

NPJ Regime Frequency and ENSO

- Jet Extensions
 and Equatorward
 Shifts are
 favored during
 an El Niño
- Jet Retractions
 and Poleward
 Shifts are
 favored during a
 La Niña

NPJ Regime Frequency and the MJO

- Jet Retractions are favored during Phases 2, 3, and 4
- Poleward Shifts are favored during Phases 5 and 6
- Jet Extensions
 are favored
 during Phases 7,
 8, and 1

NPJ Regime Frequency and the PNA

- Jet Extensions and Poleward Shifts are favored during a positive PNA
- Jet Retractions
 and Equatorward
 Shifts are
 favored during a
 negative PNA

NPJ Regime Forecast Frequency

The percent frequency that an NPJ regime is over/under forecast relative to verification at various forecast lead times in the GEFS ensemble mean reforecasts

		Extension	Retraction	Poleward	Equator	Origin
	24 h	1.54%	0%	1.92%	-3.07%	-0.21%
ne	48 h	3.94%	-0.16%	7.96%	-6.38%	-2.11%
Ē	72 h	3.50%	-2.31%	10.59%	-7.93%	-1.61%
-eac	96 h	2.37%	-1.27%	8.77%	-9.21%	-0.48%
ast l	120 h	2.28%	-4.04%	8.46%	-11.64%	1.55%
recă	144 h	3.37%	-2.37%	0.80%	-13.32%	3.98%
<u>Р</u>	168 h	0%	-2.93%	-2.08%	-16.84%	7.65%
	192 h	-3.20%	-6.40%	-6.16%	-18.56%	12.18%
	216 h	-9.14%	-7.33%	-12.50%	-25.51%	19.33%

NPJ Regime

Negative: under forecast // Positive: over forecast

NPJ Regime Forecast Frequency

The percent frequency that an NPJ regime is over/under forecast relative to verification at various forecast lead times in the GEFS ensemble mean reforecasts

		Extension	Retraction	Poleward	Equator	Origin
	24 h	1.54%	0%	1.92%	-3.07%	-0.21%
ne	48 h	3.94%	-0.16%	7.96%	-6.38%	-2.11%
	72 h	3.50%	-2.31%	10.59%	-7.93%	-1.61%
-eac	96 h	2.37%	-1.27%	8.77%	-9.21%	-0.48%
ast l	120 h	2.28%	-4.04%	8.46%	-11.64%	1.55%
rece	144 h	3.37%	-2.37%	0.80%	-13.32%	3.98%
Бо	168 h	0%	-2.93%	-2.08%	-16.84%	7.65%
	192 h	-3.20%	-6.40%	-6.16%	-18.56%	12.18%
	216 h	-9.14%	-7.33%	-12.50%	-25.51%	19.33%

NPJ Regime

Negative: under forecast // Positive: over forecast

Real time NPJ Phase Diagram Verification Statistics 2016–2017

Reliability Diagram (Sept 1 – May 31)

Perfect Reliability

The GEFS appears to be underdispersive with respect to medium-range forecasts of the NPJ within the phase diagram

GFS Average Error – Regime

Average GEFS Mean Error – Regime

GEFS Probability of Detection – Regime

Time Series of GFS and GEFS Mean Error

Extend N=75
Retract N=57
Poleward N=83
Equator N=56

Colored dots identify the NPJ regime on a particular day

Jet Regime-Dependent Forecast Skill

Percent Difference Between the Frequency of Forecasts with Below-Normal and Above-Normal RMSE

Jet Regime-Dependent Forecast Skill

Percent Difference Between the Frequency of Forecasts with Below-Normal and Above-Normal RMSE

Best/Worst Forecast Statistics

10-d trajectory comparison between periods characterized by the best/worst medium-range forecasts

All Events	PC1 _{start}	PC2 _{start}	ΔΡC1	ΔΡC2	Mean Traj. Dist
Good Forecasts (475)	0.09	0.04	0.09	0.16	3.50
Bad Forecasts (763)	-0.18	-0.08	-0.01	-0.21	4.33
Jet Extensions	PC1 _{start}	PC2 _{start}	ΔΡC1	ΔΡC2	Mean Traj. Dist
Good Forecasts (77)	1.54	-0.09	-0.98	0.40	3.69
Bad Forecasts (90)	1.35	-0.01	-1.41	-0.14	4.57
Jet Retractions	PC1 _{start}	PC2 _{start}	ΔΡC1	ΔΡC2	Mean Traj. Dist
Good Forecasts (63)	-1.36	0.14	1.09	0.04	3.77
Bad Forecasts (145)	-1.58	-0.11	1.18	-0.25	4.56
Poleward Shifts	PC1 _{start}	PC2 _{start}	ΔΡC1	ΔΡC2	Mean Traj. Dist
Poleward Shifts Good Forecasts (63)	PC1 _{start} 0.12	PC2 _{start} 1.45	ΔPC1 0.00	ΔPC2 -0.81	Mean Traj. Dist 3.59
Poleward ShiftsGood Forecasts (63)Bad Forecasts (90)	PC1 _{start} 0.12 0.02	PC2 _{start} 1.45 1.40	ΔPC1 0.00 0.31	ΔPC2 0.81 1.44	Mean Traj. Dist 3.59 4.62
Poleward Shifts Good Forecasts (63) Bad Forecasts (90) Equatorward Shifts	PC1 _{start} 0.12 0.02 PC1 _{start}	PC2 _{start} 1.45 1.40 PC2 _{start}	ΔΡC1 0.00 0.31 ΔΡC1	ΔΡC2 0.81 1.44 ΔΡC2	Mean Traj. Dist 3.59 4.62 Mean Traj. Dist
Poleward ShiftsGood Forecasts (63)Bad Forecasts (90)Equatorward ShiftsGood Forecasts (61)	PC1 _{start} 0.12 0.02 PC1 _{start} 0.20	PC2 _{start} 1.45 1.40 PC2 _{start} -1.42	ΔΡC1 0.00 0.31 ΔΡC1 0.36	ΔΡC2 0.81 1.44 ΔΡC2 1.08	Mean Traj. Dist 3.59 4.62 Mean Traj. Dist 3.52
Poleward ShiftsGood Forecasts (63)Bad Forecasts (90)Equatorward ShiftsGood Forecasts (61)Bad Forecasts (112)	PC1 _{start} 0.12 0.02 PC1 _{start} 0.20 0.17	PC2 _{start} 1.45 1.40 PC2 _{start} -1.42 -1.52	ΔΡC1 0.00 0.31 ΔΡC1 0.36 0.05	ΔPC2 0.81 1.44 ΔPC2 1.08 1.09	Mean Traj. Dist 3.59 4.62 Mean Traj. Dist 3.52 4.36
Poleward ShiftsGood Forecasts (63)Bad Forecasts (90)Equatorward ShiftsGood Forecasts (61)Bad Forecasts (112)Origin	PC1 _{start} 0.12 0.02 PC1 _{start} 0.20 0.17 PC1 _{start}	PC2 _{start} 1.45 1.40 PC2 _{start} -1.42 -1.52 PC2 _{start}	ΔΡC1 0.00 0.31 ΔΡC1 0.36 0.05 ΔΡC1	ΔΡC2 0.81 1.44 ΔΡC2 1.08 1.09 ΔΡC2	Mean Traj. Dist 3.59 4.62 Mean Traj. Dist 3.52 4.36 Mean Traj. Dist
Poleward ShiftsGood Forecasts (63)Bad Forecasts (90)Equatorward ShiftsGood Forecasts (61)Bad Forecasts (112)OriginGood Forecasts (211)	PC1 _{start} 0.12 -0.02 PC1 _{start} 0.20 -0.17 PC1 _{start} -0.03	PC2 _{start} 1.45 1.40 PC2 _{start} -1.42 -1.52 PC2 _{start} 0.07	ΔΡC1 0.00 0.31 ΔΡC1 0.36 0.05 ΔΡC1 0.13	ΔPC2 0.81 1.44 ΔPC2 1.08 1.09 ΔPC2 0.12	Mean Traj. Dist 3.59 4.62 Mean Traj. Dist 3.52 4.36 Mean Traj. Dist 3.31

Reliability Diagram

GEFS Ensemble Mean Error – Season

GFS Average Error – Month

Average GEFS Mean Error – Month

GEFS Probability of Detection – Month

GEFS Ensemble Mean POD by NPJ Regime

NPJ Phase Diagram Technical Slides

Real Time North Pacific Jet Phase Diagram

Real Time North Pacific Jet Phase Diagram

 Each point on the phase diagram is a weighted average of the principal components within +/- 1 day of the time under consideration

Example: 0000 UTC 8 November 2014
Real Time North Pacific Jet Phase Diagram

250-hPa Zonal Wind Anomalies and EOF1: 0000 UTC 2 Jun

250-hPa zonal wind anomalies at 0000 UTC 2 Jun project strongly onto EOF2 > 0

