

Project Motivations

•	The Climate Forecast S	ystem (CFS	version 2 does not	include a lake scheme.
---	------------------------	------------	--------------------	------------------------

 For resolved lakes (i.e. the Great Lakes), the CFS model treats them as ocean; and unresolved small lakes are treated as land.

- Lake processes and their interactions with the atmosphere are neglected.
 - Potentially degrading CFS climate forecasting skill.

Project Objectives

1) To incorporate a physically based lake model into CFS

2) To evaluate and improve the prediction skill of CFS

The lake fractions for the CFS model grids at a 100 km resolution

The FLake Model

- The Freshwater Lake (Flake) model developed by Mironov (2008): http://www.flake.igb-berlin.de
- FLake is a one dimensional, two-layer physically based lake model that simulates:
 - lake temperature
 - surface fluxes
 - lake ice thickness
- It is currently operational in climate system models in Europe and Canada.

Lake Thermal Stratification

The bathymetry of the Great Lakes

Lake surface temperature simulations

The Improved FLake model

One additional layer is added to the Flake model to describe the hypolimnion

Lake surface temperature simulations

1984-2010

Lake surface temperature simulations

Lake temperature profile simulations for Lake Superior

Lake temperature profile simulations for Lake Superior

Lake ice simulations

1984-2002

Coupling between CFS and FLake

CFS subroutines ghphys.f sfc_drv.f Flake subroutine sfc_drv_Flake.f

Lake fraction and lake depth from the Global Lake Database version 2 (Kourzeneva, 2009)

Ensemble simulations with CFS and CFS_FLake for 2014

• Initial times: Z00 on 1st, 6th, 11th, 16th, 21st, and 26th

Run time: 9 months

- Hindcasts: Starting from April 2013 through December 2014 to produce 9 leads for each simulation month for 2014.
- There are total 6 ensemble members for each simulation month from January through December 2014.

Temperature hindcasts with CFS and CFS_Flake for 2014

Surface skin temperature hindcasts with CFS and CFS_FLake for 2014

Precipitation hindcasts with CFS and CFS_Flake for 2014

Lake Fraction distribution in the Great Lakes region in CFS_FLake

Correlation between hindcasts and observations for the Great Lakes region

Observation: the Climate Research Unit (CRU) data

Temperature observations and hindcasts for the Great Lakes region

Correlation between hindcasts and observations for the Great Lakes region

CFS precipitation hindcasts

CFS_FLake precipitation hindcasts

Lake ice hindcasts for the Great Lakes for 2014

Lake ice hindcasts for the Great Lakes for 2014

Jan. 2014 OBS Ice Fraction (%) 50N 45N 40N 90W 75W 20 Ice Thickness (m), CFS Ice Thickness (m), CFS_FLake 50N 50N 45N 45N 40N 40N 75W 75W 90W 0.01 0.1 0.2 0.5 0.01 0.1 0.2 0.5

Mar. 2014

Feb. 2014

Apr. 2014

Summary

- 1) We added one additional layer to the FLake model for deep lakes (>50 m) to improve the simulations of lake stratifications.
- 2) The improved FLake model produces better simulations for lake surface temperature, temperature profile and lake ice.
- 3) The coupled CFS_FLake model changes precipitation and temperature forecasts at both global and regional scales when compared to the original CFS.
- 4) The coupled model produces a better spatial distribution of lake ice than the original CFS for the Great Lakes region.
- 5) Longer term ensemble simulations with the coupled CFS-FLake model are needed to more objectively evaluate its performance in climate forecasts.