Towards Advancing the MJO Forecasting in the NGGPS

(A R2O Project Contributing to NGGPS)

PI: Joshua Xiouhua Fu
IPRC, SOEST, University of Hawaii (UH)

Co-Is: Yuejian Zhu, Wei Li, and Xiaqiong (Kate) Zhou NOAA/NCEP/EMC

Cecelia Deluca NOAA/ESRL

Objective and Approaches

The proposed study aims to better understand the impacts of cumulus parameters and underlying SST conditions and to improve the MJO and 1-30-day weather forecasting in the prototype NGGPS system (and GFS/GEFS).

Three steps are planned to achieve the proposed goal:

- Understand the impacts of cumulus parameters and SST conditions on the MJO and 1-30-day weather forecasting;
- <u>Document the systematic SST errors in the NGGPS: mean state,</u> <u>interannual variability, intra-seasonal variability and diurnal cycle;</u>
- <u>Understand the causes of systematic SST errors and assess</u> their impacts on the MJO and 1-30-day weather forecasting.

UH Sub-seasonal Forecasting System

Global Model Physics

- Shallow convection (Fu et al. 2008)
- Stratiform rainfall (Fu and Wang 2009)

Sub-seasonal Prediction

 Multi-Model Ensemble (MME) (Fu et al. 2013)

Sea Surface Conditions

- Air-sea Coupling (Fu et al. 2003; Fu and Wang 2004; Fu et al. 2007; 2013)
 - Forecasted Daily SST (Fu et al. 2008; Fu et al. 2015)

Initial Conditions

 Nudging strategy and signal-recovering method (Fu et al. 2009, 2010)

http://iprc.soest.hawaii.edu/users/xfu

How will Cumulus Parameterizations and SST Conditions Influence MJO Forecasting in the GFS?

NCEP GFS Forecast Experiments

1. Model

- Atmosphere-only GFS (May 2011 version)
- T126/L64

2. SSTs

- Clim (<u>no intra-seasonal SST</u> anomalies)
- NCDC OI analysis (weak intra-seasonal SST anomalies)
- TMI (TRMM Microwave Imager) (strong intra-seasonal SST anomalies)

3. Convection parameterizations

- SAS (Simplified Arakawa Schubert (Pan&Wu 1995)): Operational CFSv2
- SAS2 (Revised Simplified A-S (Han&Pan 2011)): Operational GFS
- RAS (Relaxed A-S (Moorthi and Suarez (1999))

4. Forecast runs

- Initial conditions: CFSR
- Initial 4 times daily: <u>1 Oct 2011 to 15 Jan 2012</u> (DYNAMO-IOP: Oct-MJO & Nov-MJO)
- Integrate 31 days

Sensitivity of Nov-MJO to Cumulus Parameterizations and SST Forcing

Ocean coupling has stronger influences on some MJOs than on other MJOs

Fu et al. (2015, 2017a)

Forecasting Oct-&Nov-MJO Events During DYNAMO IOP

MJO Diversity

During Entire DYNAMO Period (Oct. 01,2011-Mar. 31, 2012)

Year-around:

- Primary vs. Successive (Matthews 2008)
- Propagating vs. Non-propagating (Kim et al. 2014)
- Coupled vs. Uncoupled (Fu et al. 2015)

Boreal-Winter:

Three MJO types (Hirata et al. 2013)

Five MJO events are observed in which only two of them have robust SST anomalies associated.

American

- The October-MJO is largely controlled by atmospheric internal dynamics.
- The November-MJO is strongly coupled to underlying ocean.

<u>Different Air-Sea Coupling Regimes</u> <u>from Long-term Observations</u>

SSTA

Why are the impacts of SSTfeedback on Nov-MJO so different in the RAS and SAS2?

Fu et al. (2017b)

OLR and Surface Convergence in Response to Same SST Anomalies

Q1 and Q2 in Response to Same SST Anomalies

Day-5

Day-10

Day-15

Day-20

Schematics of SST-Feedback

Three-type Boreal-summer MJOs

Guam Marshalls
Palau FSM

Another example of MJO diversity

Fu et al. (2017c)

Three Different MJO Types

Different Downstream Impacts

Recent Progresses Made on MJO Forecasting with GFS/GEFS at NCEP/EMC

Courtesy of Yuejian Zhu's group

Intra-seasonal SST forcing (RTG) improves MJO Forecasting of the GFS

Forecast lead-time (days)

Updated Stochastic Physics Further Improves MJO Forecasting of the GFS

Summary

Major Accomplishment in FY17:

- ✓ A suite of hindcasts with the GFS under three different cumulus schemes and SST conditions during DYNAMO IOP is used in this study.
- ✓ Reveal MJO diversity in ocean coupling: The Oct-MJO is largely controlled by atmospheric internal dynamics while the Nov-MJO is strongly coupled to underlying ocean.
- ✓ <u>Cumulus parameterization</u> plays an essential role in capturing the impacts of ocean coupling on the MJO.
- ✓ There are three different boreal-summer MJO types: Type-I&III have robust downstream impacts in Pacific and Atlantic sectors while Type -II is limited in Indian sector.

Priority Focus for FY18

Continue to collaborate with NCEP/EMC team to better understand the impacts of cumulus schemes and SST and explore the ways to improve MJO and 1-30-day weather forecasting in the GFS/GEFS and NGGPS.

Key Issue

- > Availability of NGGPS model and outputs.
- NOAA computing resources for research.

Thank You Very Much!

Extra Slides Palau FSM

America Samoa

MJO Skills in Three GCMs during DYNAMO Period

(Wheeler-Hendon Index) (Sep 2011- Mar 2012)

GFS/GEFS: 14 days

(Hamill and Kiladis 2014)

CFSv2&UH: 25/25 days

CFSv2&UH MME: 37 days

Fu et al. (2013)

NOAA/NCEP, Aug. 02, 2017

Forecasts of GFS, CFSv2 and UH with IC on Nov. 11

Air-sea Coupling Doubles the MJO/ISO Intensity

Fu et al., 2003; Fu and Wang 2004

Air-sea Coupling Extends the Predictability of the MJO/ISO by at least One Week

We first discovered that forcing the atmosphere-only model with the forecasted daily SST from the coupled model can reach the same sub-seasonal forecasting skill as the fully coupled model.

Fu et al. (2015); Wang et al. (2015)

Fu et al. (2007, 2008) along with Vitart et al. (2007) and Woolnough et al. (2007)

Schematics of MJO Vertical Structure

Enhanced Shallow-Convection Moistening Speeds up Model MJO Propagation

Stratiform Rainfall Fraction is an Essential Factor for MJO Simulation

Fu and Wang (2009)

The MJO has broad wavenumber-frequency bands

