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• The	ulKmate	goal	of	the	proposed	
study	is	to	deliver	to	the	NCEP	a	
revoluKonary	diagnosKcs	system	that	
is	capable	of	tracing	the	sources	of	
systemaKc	errors	and	the	evoluKons	
of	these	errors’	3-dimensional	(3D)	
structures	with	the	forecast	lead	Kme	
in	the	operaKonal	forecast	system.		
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•  First	proposed	by	Rodwell	and	Palmer	
(2007,	Q.	J.	Royal	Met.	Soc.)	that	extends	
the	work	of	Klinker	and	Sardeshmukh	
(1992)		
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•  Perfect	model	and	perfect	observaKons:	INC	=	0	at	each	
data	assimilaKon	(DA)	cycle.	

•  Assuming	the	Kme	mean	observaKonal	errors	is	zero:	the	
Kme	mean	of	INC	(over	many	DA	cycles)	is	zero	for	
perfect	model.	

•  Therefore,	the	non-zero	value	of	the	average	of	INC	over	
many	DA	cycles	is	associated	with	model	errors.		

INC	=	analysis		increment		
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•  (Ti(n)	–	Ti(0))	=	(Ti(n)	– Ani-1)		corresponds	to	forecast	
tendency	at	the	DA	cycle	i,	starKng	at	the	iniKal	Kme	
ending	at	the	n	steps	aber.	

•  (Ti(j)	–	Ti(j-1))	corresponds	to	forecast	tendency	between	
step	j	and	step	(j-1)	at	at	the	DA	cycle	i.	
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•  As	in	Klinker	and	Sardeshmukh	(1992),	they	only	
considered	the	mean	forecast	tendency	at	the	first	Kme	
step	starKng	each	DA	cycle:	

	

•  Therefore	the	average	of	the	iniKal	tendency	at	each	DA	
cycle,	whose	non-zero	value	is	due	to	model	errors	can	be	
related	into	individual	processes	
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•  However,	the	average	of	each	term	on	the	right	hand	side	
over	many	DA	cycles	by	itself	does	NOT	have	to	represent	
error,	although	their	sum	corresponds	to	model	error.	

•  Therefore,	the	method	proposed	by	Rodwell	and	Palmer	
(2007,	Q.	J.	Royal	Met.	Soc.)	is	not	very	effecKve	for	
idenKfying	the	source(s)	of	model	errors.	
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•  The	proposed	error	tracking	system	follows	the	
same	idea	as	Rodwell	and	Palmer	(2007),	i.e.,	using	
NWP	technique	to	assess	model	errors	except	each	
term	on	the	RHS	of	the	forecast	tendency	equaKon	
also	represents	the	error	associated	with	a	specific	
process,	and	their	sum	corresponds	to	the	total	
error	(i.e.,	the	LHS	of	the	forecast	tendency	
equaKon.)	.	

•  This	new	funcKonality	of	the	proposed	process-
based	error	tracking	system	is	built	upon	the	
climate	feedback	response	analysis	method	
(CFRAM,	Lu	and	Cai	2008	and	Cai	and	Lu	2008)	
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ΔTτ = (Tτ −T0 )t    (1)

We	consider	

τ	is	the	lead	Kme	of	the	forecast	and	subscript	“0”	corresponds	to	
iniKal	condiKon	(or	analysis),	and	the	overbar	with	superscript	“t”	
represents	an	averaging	over	a	period	of	Kme	(e.g.,	a	seasonal	
mean).		

Let	τ	be	6	hours,	then	the	average	of	the	6-hour	forecast	tendencies	
over	a	period	of	Kme	(t)	is	the	same	as	the	average	of	all	DA	cycles	
for	the	period	of	Kme.	=>	(1)	represents	the	average	of	analysis	
increment,	which	should	be	zero	for	perfect	model	and	random	
observaKonal	errors.		Therefore,	all	we	need	to	do	is	to	make	each	
term	on	the	right	hand	side	of	the	forecast	tendency	equaKon	
represent	error.	
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Using	the	CFRAM	technique	(linearizaKon	of	radiaKve	transfer	model	
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•  The	terms	in	red	cannot	be	evaluated	directly	purely	by		
offline	calculaKons	without	adding	more	output	fields	to	
the	standard	output	fields.		But	they	can	be	evaluated	
indirectly	(as	the	residual).	

•  Note	that	leb	and	right	hand	sides	of	(3)	can	be	interpreted	
as	the	systemaKc	errors	as	well	as	systemaKc	forecasts	
tendency	errors	for	τ	=	6	hours	(DA	cycle	Kme	interval)	
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•  The	systemaKc	error	definiKon	implies	that	all	terms	on	the	
right	hand	side	can	be	evaluated	at	a	much	longer	lead	
Kme,	or	τ	does	not	have	to	be	6	hours	with	similar	accuracy	
as	long	as	linearizaKon	is	sKll	valid	(we	can	esKmate	the	
errors	due	to	linearizaKon	as	a	funcKon	of	lead	Kme).	

•  This	would	allow	us	to	exam	the	evoluKon	of	individual	
error	terms,	which	may	help	to	understand	the	“causal”	
relaKonships	among	individual	error	terms.	



Data required  
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•  GEFS:	bp.ncep.noaa.gov/pub/data/nccf/com/gens/prod/	
•  GFS:			bp.ncep.noaa.gov/pub/data/nccf/com/gfs/prod/	
	

lack	of	surface	fields		or		not	all	required	variables	are	
available	in	both	analysis	(iniKal	condiKons)	and	forecast	
outputs.	

•  CFS:				bp.ncep.noaa.gov/pub/data/nccf/com/cfs/prod/	
						Surface	analysis	and	forecasts	(4	Kmes	per	day;	181x360)	

	Incoming	solar	flux,	down/up	SW	and	LW	at	surface,	Ps,	Ts,	albedo,	SH,	LH	

	Pressure	analysis	and	forecasts	(4	Kmes	per	day;	181x360;	37	levels)	
	3D	Temp,	water	vapor,	clouds	(liquid	water/ice,	area),	ozone	

•  Period	of	study:	10/01/2016	–	09/30/2017	
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•  The	meridional	parern	of	systemaKc	errors	remains	largely	
unchanged	from	day	1	and	the	amplitude	of	systemaKc	errors	grow	
weakly	as	lead	Kme	increases	(except	over	ArcKc	where	errors	grow	
in	Kme	pronouncedly).	

•  Warm	biases	over	most	laKtudes	except	over	ArcKc	where	CFS	has	
cold	biases.	

•  There	are	large	cancellaKons	of	errors	due	to	different	processes.	
Mostly	noKceable	cancellaKons	are	found	between	warm	biases	
caused	by	less-cloud	biases	over	mid-laKtudes	of	Southern	
Hemisphere	and		cold	biases	from	stronger	ocean	heat	storage	term.	

•  Dry	biases	contribute	to	cold	biases	over	ArcKc	that	grow	as	the	lead	
Kme	increases.		
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•  examine	(lead	Kme)	evoluKon	of	model	
systemaKc	errors	(up	to	1	month)	and	
their	relaKons	with	forecast	tendency	
errors.	
•  examine	the	seasonal	dependence	of	
model	errors.	
•  examine	the	diurnal	cycle	of	model	errors	
from	forecast	tendency	perspecKve	
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•  It	is	flexible	since	it	allows	quanKtaKve	
evaluaKons	of	the	impacts	of	single	or	
mulKple,	simultaneous	model	updates	on	
forecast	skill	and	can	also	be	seamlessly	
expanded	to	evaluate	models	of	both	
global	and	regional	domain.		
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•  It	can	be	used	to	test	one	new	
parameterizaKon	scheme	for	a	given	
physical	process	or	a	set	of	new	
parameterizaKon	schemes	for	several	
physical	processes.	This	helps	to	shorten	
the	model	development	cycle.	
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•  It	can	be	used	to	understand	the	spread	
of	ensemble	forecasts	or	contribuKons	to	
the	spread	of	ensemble	forecasts	from	
individual	processes,	as	a	funcKon	of	lead	
Kme.	


