Bridging the gap in NOAA’s extended and long range prediction systems through the development of new forecast products for weeks 3 and 4

Nat Johnson1,2
Daniel Harnos3, Jiaxin Black2,4, Stephen Baxter3, Steven Feldstein5, Michelle L’Heureux3, Ángel Muñoz1, and Shang-Ping Xie4

\textbf{NGGPS/MAPP PIs Meeting 2017}

1Princeton University
2NOAA Geophysical Fluid Dynamics Laboratory
3NOAA/NCEP Climate Prediction Center
4Scripps Institution of Oceanography, University of California, San Diego
5Penn State University
Bridging the forecast gap in weeks 3-4

Primary objectives:

- To transition a statistical MJO/ENSO phase model into an operational CPC week 3-4 temperature and precipitation outlook for all seasons
- To develop additional hybrid dynamical/statistical forecast tools for weeks 3-4
Johnson et al. (2014): Skillful wintertime temperature forecasts with statistical model for some initial states of the MJO and ENSO
Operational Adaptation (Led by Dan Harnos)

• Extended periods from DJFM to 12 running 3-month periods.
• Applied to precipitation as well as temperature
• Shifted from ERA-Interim to daily observations:
 • CPC Internal T2m Data (Janowiak et al. 1999)
 • CPC Unified Gauge-Based Analysis (Xie et al. 2010)
 • Fourth root taken to increase distribution normality.
• Shifted from three-class to two-class forecast.
• Combined product for Weeks 3 and 4.
• Developed a complementary linear regression-based product
Statistical guidance emphasizing the subseasonal ENSO footprint was strongly utilized. This guidance, along with the dynamical consensus, leads to a more confident precipitation outlook relative to temperature. Above-median precipitation is favored.
How well have we done?

Temperature

Heidke Skill Scores

<table>
<thead>
<tr>
<th></th>
<th>9/2015 To 8/2016</th>
<th>9/2016 To 4/2017</th>
<th>All Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC</td>
<td>36.3</td>
<td>32.7</td>
<td>34.9</td>
</tr>
<tr>
<td>CFSv2</td>
<td>29.5</td>
<td>15.1</td>
<td>23.8</td>
</tr>
<tr>
<td>ECMWF</td>
<td>39.1</td>
<td>17.3</td>
<td>30.6</td>
</tr>
<tr>
<td>JMA</td>
<td>48.3</td>
<td>45.9</td>
<td>47.4</td>
</tr>
<tr>
<td>Eq. Wtd</td>
<td>46.7</td>
<td>30.8</td>
<td>40.5</td>
</tr>
<tr>
<td>MLR</td>
<td>29.9</td>
<td>28.3</td>
<td>29.3</td>
</tr>
<tr>
<td>PM</td>
<td>-4.8</td>
<td>-1.9</td>
<td>-3.6</td>
</tr>
</tbody>
</table>

Experimental CPC Outlook

- **Dynamical Guidance - Temperature**
- **Statistical Guidance - Temperature**

Dynamical Models

- CPC
- CFSv2
- ECMWF
- JMA

Equally Weighted Dynamical Models

- Eq. Wtd

Statistical Models

- MLR
- PM
How well have we done?
Precipitation

Heidke Skill Scores

<table>
<thead>
<tr>
<th></th>
<th>9/2015 To 8/2016</th>
<th>9/2016 To 4/2017</th>
<th>All Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC</td>
<td>0.6</td>
<td>7.3</td>
<td>3.2</td>
</tr>
<tr>
<td>CFSv2</td>
<td>2.2</td>
<td>8.8</td>
<td>4.8</td>
</tr>
<tr>
<td>ECMWF</td>
<td>8.8</td>
<td>13.6</td>
<td>10.7</td>
</tr>
<tr>
<td>JMA</td>
<td>13.5</td>
<td>14.3</td>
<td>13.8</td>
</tr>
<tr>
<td>Eq. Wtd</td>
<td>12.6</td>
<td>17.5</td>
<td>14.5</td>
</tr>
<tr>
<td>MLR</td>
<td>-0.8</td>
<td>21.9</td>
<td>8.1</td>
</tr>
<tr>
<td>PM</td>
<td>-5.5</td>
<td>16.6</td>
<td>3.2</td>
</tr>
</tbody>
</table>
Going beyond MJO, ENSO, and trend: Statistical forecasts of teleconnection pattern indices

- **Forecasts of two-week mean indices in DJF (1980-2013)** with a statistical forecast model (partial least squares regression)
- **Predictors**: tropical convection, upper tropospheric circulation, stratospheric circulation

Black et al. (2017, Monthly Weather Review)
DJF forecast skill of teleconnection pattern indices

PNA

NAO

AO

Black et al. (2017, Monthly Weather Review)
An important z300 predictor of the AO in weeks 3-4

Black et al. (2017, Monthly Weather Review)
Preliminary exploration of hybrid dynamical-statistical modeling with Weather Types (WTs)

- NOAA GFDL Forecast-oriented Low Ocean Resolution (FLOR) model DJF hindcasts 1981-2016
- Initialized on first of the month
- Atmosphere ICs: nudged toward MERRA reanalysis
- 12 ensemble members

Correlation between week 3-4 forecast and verification

T2m

precip
Forecast WTs: K-means cluster analysis of week 3-4 PNA region 500 hPa height (z500) anomalies

$K = 4$

Forecast z500 cluster 1

Verified z500 for cluster 1

Forecast z500 cluster 2

Verified z500 cluster 2

Forecast precip

Verified precip

Forecast precip

Verified precip
Summary

• Statistical week 3-4 forecast guidance successfully transitioned to CPC’s experimental and operational outlooks

• Statistical guidance competitive with dynamical guidance in weeks 3-4

• Week 3-4 skill: temperature encouraging, precipitation marginal

• Hybrid dynamical forecast system with weather types in exploratory stage