Bridging the gap in NOAA's extended and long range prediction systems through the development of new forecast products for weeks 3 and 4

Nat Johnson^{1,2}

Daniel Harnos³, Jiaxin Black^{2,4}, Stephen Baxter³, Steven Feldstein⁵, Michelle L'Heureux³, Ángel Muñoz¹, and Shang-Ping Xie⁴

NGGPS/MAPP PIs Meeting 2017

¹Princeton University
²NOAA Geophysical Fluid Dynamics Laboratory
³NOAA/NCEP Climate Prediction Center
⁴Scripps Institution of Oceanography, University of California, San Diego
⁵Penn State University

C

Bridging the forecast gap in weeks 3-4

Primary objectives:

- To transition a statistical MJO/ENSO phase model into an operational CPC week 3-4 temperature and precipitation outlook for all seasons
- To develop additional hybrid dynamical/statistical forecast tools for weeks 3-4

Johnson et al. (2014): Skillful wintertime temperature forecasts with statistical model for some initial states of the MJO and ENSO

Operational Adaptation (Led by Dan Harnos)

- Extended periods from DJFM to 12 running 3-month periods.
- Applied to precipitation as well as temperature
- Shifted from ERA-Interim to daily observations:
 - CPC Internal T2m Data (Janowiak et al. 1999)
 - CPC Unified Gauge-Based Analysis (Xie et al. 2010)
 - Fourth root taken to increase distribution normality.
- Shifted from three-class to two-class forecast.
- Combined product for Weeks 3 and 4.
- Developed a complementary linear regression-based product

Statistical guidance emphasizing the subseasonal ENSO footprint was strongly utilized. This guidance, along with the dynamical consensus leads to a more confident precipitation outlook relative to temperature. Above-median precipitation is favored

How well have we done? Temperature

Heidke Skill Scores

How well have we done? Precipitation

HSS Time Series

Heidke Skill Scores

9/2015 To 8/2016	9/2016 To 4/2017	All Dates
0.6	7.3	3.2
2.2	8.8	4.8
8.8	13.6	10.7
13.5	14.3	13.8
12.6	17.5	14.5
-0.8	21.9	8.1
-5.5	16.6	3.2
	To 8/2016 0.6 2.2 8.8 13.5 12.6 -0.8	To To 4/20170.6To 4/20170.67.32.28.88.813.613.514.312.617.5-0.821.9

Going beyond MJO, ENSO, and trend: Statistical forecasts of teleconnection pattern indices

Pacific/North American Pattern (**PNA**)

North Atlantic Oscillation (**NAO**)

Arctic Oscillation (**AO**)

- Forecasts of two-week mean indices in DJF (1980-2013) with a statistical forecast model (partial least squares regression)
- **Predictors**: tropical convection, upper tropospheric circulation, stratospheric circulation

Black et al. (2017, Monthly Weather Review)

DJF forecast skill of teleconnection pattern indices

Conquerrislationithetvolgearfocetasterradtverifideelt(6FSv2)

Black et al. (2017, Monthly Weather Review)

An important z300 predictor of the AO in weeks 3-4

Preliminary exploration of hybrid dynamical-statistical modeling with Weather Types (WTs)

- NOAA GFDL Forecast-oriented Low Ocean Resolution (FLOR) model DJF hindcasts 1981-2016
- Initialized on first of the month
- Atmosphere ICs: nudged toward MERRA reanalysis
- 12 ensemble members

Correlation between week 3-4 forecast and verification

Forecast WTs: K-means cluster analysis of week 3-4 PNA region 500 hPa height (z500) anomalies

Summary

- Statistical week 3-4 forecast guidance successfully transitioned to CPC's experimental and operational outlooks
- Statistical guidance competitive with dynamical guidance in weeks 3-4
- Week 3-4 skill: temperature encouraging, precipitation marginal
- Hybrid dynamical forecast system with weather types in exploratory stage