

Increasing Forecast Skill through Bridging of Climate Teleconnections:

A Hybrid Statistical- Dynamical Prediction System

Dan Collins (Climate Prediction Center)

Collaborators: Sarah Strazzo, Liwei Jia, and Emily Becker (CPC);

Q.J. Wang (U. Melbourne) and Andrew Schepen (CSIRO)

03 August 2017

MAPP/NGGPS PI Meeting

CBaM:

- Developed by CSIRO collaborators
- Application to NMME and North America

Bayesian Joint Probability (BJP) Model

- > Calibration and bridging model uses **Bayesian Joint Probability (BJP)** modeling (Wang et al. 2009)
 - Predictor (e.g., Niño 3.4) and predictand (e.g., 2-m T) modeled using a bivariate normal distribution, where the distribution parameters are not assumed to be fixed
 - Individual calibration and bridging BJP models are developed for each NMME member mean, grid point, lead, and season
 - Comparison to Ensemble Regression (EReg) baseline used at CPC (Unger et al. 2009)
- ➤ BJP generates a statistical ensemble by sampling from the posterior distribution of the bivariate normal parameters (n = 1000)

BJP Niño 3.4 bridged forecast of DJF 2-m temperature for a single grid point (1-month lead)

Raw dynamical model forecast of North American 2-m temperature

Statistically corrected (calibrated) forecast of North American 2-m temperature

Dynamical model forecast of a relevant climate index (e.g., Niño 3.4)

Statistically bridged forecast of North American 2-m temperature

Statistically bridged forecast of North American 2-m temperature

Weighted merging of forecasts based on performance in hindcast period

Statistically corrected (calibrated) forecast of North American 2-m temperature

Differences in model & observed Nino 3.4 correlation pattern

Skill in forecasts of large-scale climate indices

	CFSv2	CMC1	CMC2	GFDL	FLOR	NASA	CCSM4	NMME
Correlation w/obs	0.86	0.96	0.96	0.92	0.94	0.95	0.88	0.95

Objective

Question: Does statistical bridging using climate indices improve forecast skill, beyond the skill of calibrated model forecasts of temperature and precipitation?

BSS: Model calibrated forecasts of DJF 2-m temperature

BSS: Lead 1 bridged forecasts of DJF 2-m temperature

BSS: Lead 1 merged forecasts of DJF 2-m temperature

BSS: NMME calibrated, bridged, & merged forecasts

Brier Skill Score: Probabilistic forecasts of below normal US + AK 2-m Temperature (CFSv2)

Brier Skill Score: Probabilistic forecasts of below normal US + AK 2-m Temperature (CMC1)

Precipitation bridging

Can lower skill of precipitation forecasts be enhanced by bridging?

Conclusions

- On average, calibrated forecasts are greater skill relative to Nino 3.4 bridging
- > Bridging models provide greater skill in particular seasons and regions
 - o Example: Winter temperatures, over the northern United States

> Bridging skill and enhancement of calibrated forecasts varies by model

Merged forecasts result in the most coverage of positive skill.

Ongoing and future work

- > Exploring additional climate indices for bridging (e.g., AO/NAO)
- ➤ Incorporating all ensemble members
- ➤ Application to **subseasonal** forecasts

Thank you!

Extras

Reliability: Lead 1 forecasts of DJF 2-m temperature

Reliability plots:
1-month lead calibrated and bridged CFSv2 forecasts of DJF 2-m temperature

1-Month Lead DJF Pr(Below normal 2-m T) EReg Niño 3.4 Bridging

1-Month Lead DJF Pr(Below normal 2-m T) BJP Niño 3.4 Bridging

BJP probabilities of above/below normal temperature

BJP probabilities of above/below normal temperature

