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• Fritsch et al. (1986):  MCSs account for 30-70% of warm-season 

precipitation in the central USA 

 

• Carbone and Tuttle (2008):  about 60% of warm-season precipitation 

Effects of MCSs 
accumulated precipitation (cm) from 60 MCSs in 1982 



Squall line (aka, MCS) with  

Leading-Line / Trailing-Stratiform structure 

Bryan (2002) 



Biggerstaff and Houze (1991) 

Schematic:  microphysical perspective 
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Schematic:  thermodynamic perspective 
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WRF-ARW forecast  (Δx  = 4 km) Observed radar image 

9 h  valid  09 UTC 09 UTC 

from M. Weisman 

Bow echo / squall line during BAMEX:  10 June 2003   



Clark et al (2016, Meteor. Appl.) 

UK Met Office model,  8 July 2014 



Outline 

• Goal:   

• Determine how/why a trailing-stratiform region forms  

• (using obs. & simulations) 

 

• Observations: 

• VORTEX2 (Wurman et al. 2012, BAMS) 

• Squall line case:  Bryan and Parker (2010, MWR) 

 

• Numerical modeling: 

• Following Bryan and Morrison (2012, MWR):  Δx = 4 km, 1 km, and 250 m 

• Compare simulations with/without trailing-stratiform region 

• New diagnostics (e.g., parcel trajectories)  
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at beginning of data collection: at end of data collection: 

200 km 100 0 

15 May 2009 Squall Line during VORTEX2 



System-relative location of all sounding data 

xc is the line-normal distance to the surface gust front 



System-relative location of all sounding data 



CAPE = 4200 J kg-1  
 
CIN = 8 J kg-1  
 
Δu (0.5 – 2 km ) = 10 m s-1  
 
Δu (0.5 – 10 km) = 10 m s-1  

S1 (first sounding):  xc = +106 km 



(region of partial beam blockage) 

KVNX, lowest elevation (0.5°) 



Radar analysis 
(normal to line) 
 
Gray line is 
sounding trajectory 

S6:  “cold pool” sounding 



Radar analysis 
(normal to line) 
 
Gray line is 
sounding trajectory 

S6 data on  
skew-T diagram: 

S6:  “cold pool” sounding 



Vertical profiles of buoyancy (B) from S6: 



Mesoscale analysis:  2-pass Barnes method with Δx = 10 km, Δz = 100 m 

System-relative location of all sounding data 



Analysis of buoyancy (B;  m s-2) 
(using S1 as reference) 

T = 0 ºC 



System-relative cross-line wind speed (U;  m s-1) 



Analysis of equivalent potential temperature (θe; K) 



Analysis of equivalent potential temperature (θe; K) 



Analysis of equivalent potential temperature (θe; K) 



Conceptual model of tropical MCSs 

Zipser (1977), adapted by Houze (2004) 



• Numerical model:  CM1 (“Cloud Model 1”, eg, Bryan and Fritsch 2002)   

• (compressible nonhydrostatic, similar numerics as WRF-ARW) 

• Horizontal grid spacing (Δx):  4 km, 1 km, or 0.25 km 

• 100 vertical levels for all simulations (Δz varies from 100 m to 400 m) 

• Initial condition:  S1 from 15 May 2009 (homogeneous) 

• No radiation or surface heat fluxes  (to keep environment fixed) 

• Morrison et al (2009) double-moment microphysics   

Domain:  576 km x 128 km x 25 km 

periodic 

open open 

periodic 

Numerical Simulations 

for more details:  Bryan and Morrison (2012, MWR) 



• Squall line is Initialized with a momentum source 

(Morrison et al. 2015, JAS) 

 

      + random θ perturbations to initiate 3d motions 

periodic 

open open 

periodic 

Numerical Simulations 



Reflectivity (dBZ) at 1 km AGL 

Δx = 250 m 



Reflectivity (dBZ) at 

1 km AGL 



Reflectivity (dBZ), 

line-averaged vertical 

cross sections 

(t = 6 h) 



Vertical velocity (w, m s-1) at 5 km AGL   (shading) 
 

and cloudwater evaporation rate  (black contours) 

Bryan and Morrison (2012) 



radar reflectivity 

(dBZ)  assuming  

10-cm wavelength 

Observations  

Simulation Simulation 



Bryan and Morrison (2012) 

Radar reflectivity   (shading) 
 

and fall velocity of hail (left) / graupel (right)     (black contours) 



S7:  sounding within trailing stratiform region 



Soundings within trailing stratiform region 



Soundings within trailing stratiform region 



Profiles at xc = -70 km 

Relative humidity (wrt liquid) Buoyancy (wrt initial conditions) 



Averages for -100 km ≤ xc ≤ -40 km 

Estimated radar reflectivity Rainwater evaporation rate 



Trajectory analysis 

• Parcels are translated every time step 

 



Trajectory analysis 

Red = initial position 

Green = final position 

• Parcels are translated every time step 

 



Trajectory analysis 

Red = initial position 

Green = final position 

• Parcels are translated every time step 

 

 

• Initially placed every model level, every 500 m in x and y  

    (> 5 million parcels) 

 



Find all parcels in this region  

(-100 km ≤ xc ≤ -50 km) 

at t = 6 h  



Parcels for which -100 km ≤ xC ≤ -50 km  

  and z = 3 km  

  at t = 6 h 

parcels that 

descended 

(small qv) 

parcels that  

ascended 

(large qv) 

Δx = 250 m 



Parcels for which -100 km ≤ xC ≤ -50 km  

  and z = 3 km  

  at t = 6 h 

Δx = 250 m 

parcels that 

descended 

(small qv) 

parcels that  

ascended 

(large qv) 

Δx = 4 km 



Relative humidity (wrt liquid) 

Mostly air from aloft  

A mixture of air from aloft 

and air from PBL  



Bryan and Morrison (2012) 

Sensitivity to Δx:   passive fluid tracer (g kg-1) 



Summary 
 

• With “eddy-resolving” grid spacing (Δx ≈ 100 m): 

• air from PBL mixed throughout the troposphere 

• thus, acts to moisten mid-levels  (detrainment) 

 

• With “cloud permitting” grid spacing (Δx ≈ 4 km) 

• air from PBL does not mix … it all ends up near the tropopause 

• thus, mid-level air in stratiform region is relatively dry 

 

 
Δx ≈100 m (and real clouds) Δx ≈4 km 



Discussion Topics 
 

• Eddy-resolving grid spacing of ≈100 m is not possible in 

operations 

• But, they show us what is (probably) happening in the “real world” 

 

• So how can we improve operational models (Δx ≈ 4 km)? 

• We need a better in-cloud turbulence/mixing parameterization for 

these models  (detrainment parameterization) 

• But, in my experience:  more turbulence/mixing can “kill” the 

convection   

 

• How does this affect forecasts? 

• Precipitation rates:  Δx ≈ 1-4 km tend to overestimate rainfall 

• Radiative feedbacks?  (due to changes in cloud top/bottom) 

• Implications for medium-range forecasts 


