

Strategic Implementation Plan (SIP) for a Community-based Unified Forecast System (UFS)

> Model Physics Working Group Presented by Jack Kain, NCEP/EMC Presented at Coordination Meeting for UFS SIP August 2, 2018; College Park, MD

• Jim Doyle** (NRL)

Model Physics WG Membership

- Jordan Alpert (NCEP/EMC)
- Jian-Wen Bao (ESRL/PSD)
- Ligia Bernardet (DTC/GSD/CU)
- Fei Chen (NCAR)
- Rob Cifelli (ESRL/PSD)
- Jimy Dudhia(NCAR)
- Stephen Eckermann (NRL)
- Mike Ek (NCAR)
- Timothy Fuller-Rowell (CU/SWPC)
- Jongil Han (NCEP/EMC)
- Yu-Tai Hou (NCEP/EMC)
- Steve Krueger (U. of Utah)
- Shian-Jiann Lin (GFDL)
- Shrinivas Moorthi (NCEP/EMC)
- Louisa Nance (NCAR)

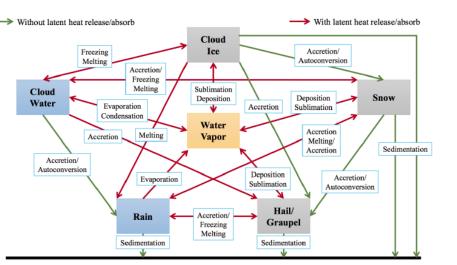
- Joe Olson (DTC/GSD/CU)
- Robert Pincus (CU)
- Bill Putman (NASA)
- Suru Saha (NCEP/EMC)
- Ruiyu Sun (NCEP/EMC)
- Vijay Tallapragada (NCEP/EMC)
- Joao Teixeira (JPL)
- Greg Thompson (NCAR)
- Helin Wei (NCEP/EMC)
- Fanglin Yang (NCEP/EMC)
- Valery Yudin (CU/SWPC)
- Chunxi Zhang (OU/CAPS)
- Ming Zhao (GFDL)
- Linjiong Zhou (GFDL)
- Xiaqiong Zhou (NCEP/EMC)

**Co-Chairs

Georg Grell** (ESRL/GSD)

Jack Kain** (NCEP/EMC)

Chris Bretherton** (UW)

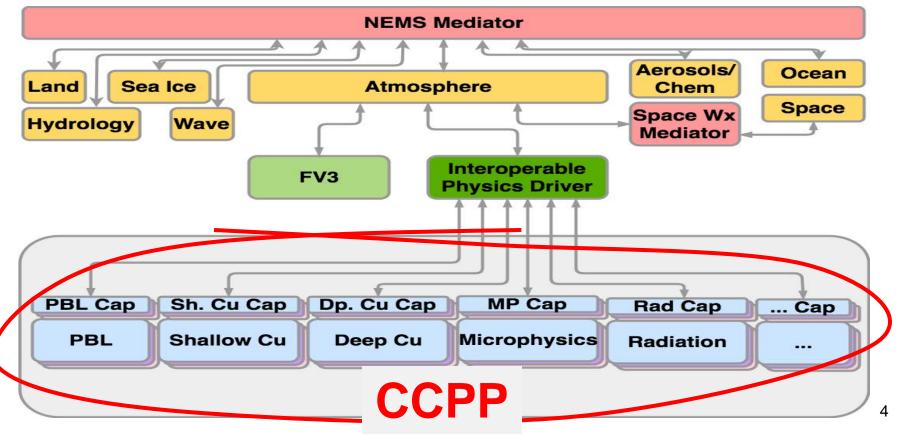

Project Milestone Accomplishments

• SIP project accomplishments to date:

- FV3-GFSv1 implementation Q2FY19

- Mostly GFS (GSM) physics
- GFDL Microphysics
- NRL O3, H2O Photochemistry Parameterization

GFDL MP at a glance


GFDL

Project Milestone Accomplishments

- SIP project accomplishments to date:
 - Development of Common Community Physics Package (CCPP) and Hierarchical Testing Framework (HTF)

Project Milestone Accomplishments

- SIP project accomplishments to date:
 - CCPP Developments
 - CCPP v1 public release (April 2018)
 - GMTB Single Column Model public release (April 2018)
 - CCPP framework now in EMC VLAB Master and integrated with FV3

Project Milestone Accomplishments

• SIP project accomplishments to date:

 Prioritize development/testing of two Physics Suites that are candidates to replace current (FV3-GFSv1) suite:

	<u>SUITE</u>		
Physical Process(es)	<u>FV3-GFSv1</u> (Q2FY19)	RAP/HRRR	<u>Climate Process Team</u> <u>EMC/CSU/Utah</u>
MICROPHYSICS	GFDL	Thompson	Morrison-Gettelman
PBL/TURB	GFS/EDMF	MYNN/EDMF	Simplified H-O Closure (SHOC)
DEEP MOIST Cu	SA-SAS	Grell-Freitas (GF)	Chikira-Sugiyama-AW (CSAW)
SHALLOW MOIST Cu	SA-SAS	MYNN/EDMF	SHOC
RADIATION	RRTMG	RRTMG	RRTMG
LAND	Noah	RUC	Noah-MP
Plus: UGWD, Noah-I	VP, Flake, RF	RTMGP	6

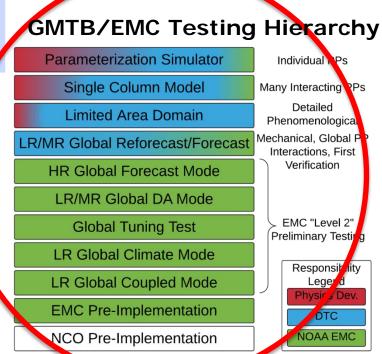
Model Physics WG Project Upcoming Developments

- SIP WG Ongoing Efforts:
 - CCPP framework being regression tested in FV3-GFSv1
 - CCPP will provide the Physics interface for FV3-GFSv2
 - All high priority Physics packages will be ready for testing through CCPP in FV3GFS by Oct 1
 - Hierarchical Testing Framework (HTF) development will be rapidly accelerated through Hurr-Supp funding

Team Coordination and Dependencies

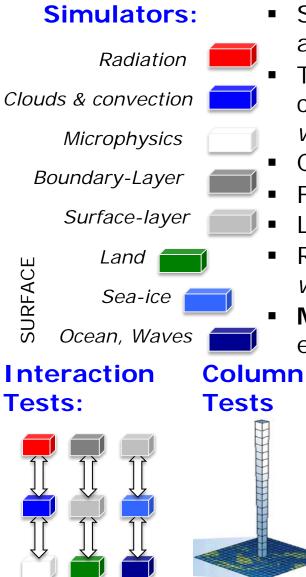
- Computer resources are inadequate for full testing of physics suites
- Benefits of CCPP interface has yet to be demonstrated during the development cycle
- Hierarchical Testing Framework (HTF) still not mature enough to impact development
- Implementation timelines for new physics are very aggressive given the thorough testing required
- *Metrics WG*: Verification metrics not codified or appropriately weighted among CAM/Weather/S2S requirements
- Land and System Architecture WGs: Coordinate on a flexible implementation strategy for land surface (inline or component)
- Ensemble WG: Stochastic physics and accounting for model error
- Aerosols and Atmos Composition: Aerosol aware physics

Model Physics WG Project Milestone Accomplishments


EXTRA SLIDES

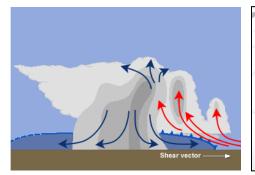
The Global Model Test Bed (GMTB) is funded by the NOAA Next-Generation Global Prediction System to foster community involvement in the development of NCEP's global prediction systems Courtesy: Shown at NOAA/NCEP, WCRP/GEWEX, and other science meetings.

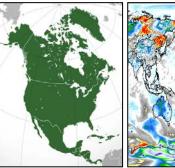
Mike Ek


NCAR & NOAA Lab (Boulder) **GMTB** activities

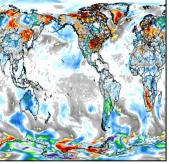
- 1. Development and maintenance of testing infrastructure
- Single column model, global workflow, verification, diagnostics
- 2. Testing and evaluation
- 2. Common Community Physics Package
- A collection of physical parameterizations, grouped in suites, that can be used with multiple dynamic cores
- A framework that enables collaborative development and R2O

Hierarchical Model Development (HMD): A Simple-to-More-Complex Approach


Courtesy: Mike Ek



•	Simulators: test subcomponents & components
	at process level, e.g. land-only, PBL-only, etc.
-	Testbed data sets to develop, drive & validate
	components: observations, models, idealized,
	with process-level "benchmarks" to pass.
•	Component interactions, with add'l benchmarks.
	Full columns, with yet additional benchmarks.
-	Limited-Area (e.g. convection) w/benchmarks.
•	Regional & global NWP & seasonal climate, again,
	with more benchmarks , e.g. typical NWP scores.


 More efficient model development, community engagement, R2O/O2R and computer usage.

Limited-Area

Regional & Global

Project Milestone Accomplishments

• SIP project accomplishments to date:

- summarize in single line bullets (leave the details to the verbal presentation)

Please highlight one accomplishment on a separate slide with an illustrative graphic

- SIP project issues:
 - summarize in single line bullets

(Title, ex "Governance") WG Project Milestone Accomplishments

• SIP project accomplishments to date:

- summarize in single line bullets (leave the details to the verbal presentation)

Please highlight one accomplishment on a separate slide with an illustrative graphic

- SIP project issues:
 - summarize in single line bullets

(Title, ex "Governance") WG Project Milestone Accomplishments

• SIP project accomplishments to date:

- summarize in single line bullets (leave the details to the verbal presentation)

Please highlight one accomplishment on a separate slide with an illustrative graphic

- SIP project issues:
 - summarize in single line bullets

 List major team coordination/dependency successes/issues

Limit your presentation; we want to move through the presentations so we can maximize time for discussion