

Office of Water Prediction

Characterizing Compound Coastal-Riverine Behavior along the U.S. East Coast using a Coupled Hydrologic-Hydrodynamic Model

Roham Bakhtyar, K. Maitaria, P. Velissariou, B. Tremble, T. Flowers, S. Moghimi, A. Abdolali, H. Mashriqui, A. J. Van der Westhuysen, G. Aggett, E.P. Clark

February 19, 2020

Agenda

- Problem
- Approach
- Regional Scale
 - Results
 - Challenges
 - Lessons Learned
- Closing Statement
- Questions

Problem

- US East Coast is highly vulnerable to coastal floods and waves
- 80-90% of the deaths due to TCs are caused by fresh water flooding and storm surge (NOAA-HRD)
- Currently, linkages between inland forecast points and National Weather Service (NWS) estuary-ocean models have not been made; thus, accurate streamflow, stage, and velocity guidance in the coastal zone is not currently available
- Accurate model derived flood/inundation maps are needed to assess storm wind vs. water-specific losses

Over 100 million people live in the red space near the coast (transition zone) do not get an integrated flood forecast today.

Solution, Approach and Validation

- Goal: Provide accurate flood/inundation simulations at the transition zone
- Solution: Develop a computational framework that combines
 - Ocean Model: Advanced Circulation Ocean Model (ADCIRC)
 - Wave Model: WAVEWATCH III
 - Hydrologic Model: National Water Model (NWM)
 - Hydrodynamic/Hydraulic Model: DFlow FM
- Approach
 - Local Scale
 - Regional Scale
 - Atlantic and Gulf Coasts
- Validation
 - Super Storm Sandy (2012)
 - Hurricane Irene (2011)
 - Hurricane Isabel (2003)

Model Domain, 1D-2D Setup

From Sandy Hook, NJ to Savannah, GA

2D/1D Coupled Model

Model Domain, 1D-2D Setup (cont'd)

Table 1. Delaware 1-D Elements

Tributary Name	
Delaware main-stem	246 kr
Rancocas Creek	21 km
Crosswicks Creek	11 km
Leipsic River	26 km
St. Jones River	35 km
Schuylkill River	8 km τ
Christina River	12 km
Brandywine Creek	5 km τ
Alloways Creek	11 km
Maurice River	39 km
Cohansey River	24 km

Table 2. Chesapeake 1-D Elements

Table 2. Chesapeake 1-D Elements				
	Tidal			
	Limit			
GNIS_NAME	(mi)	Remark		
		Above DC, near		
Potomac R	5	Little Falls		
Susquehanna R	6	HEP Lock&Dam		
Rappahannock R	65			
James R	95	D/S Richmond		
Wicomico R	50	Nr Salisbury		
York R		A11		
Mattaponi R	5	Above York R		
Pamunkey R	6	Above York R		
:		:		

Table 3. Carolinas 1-D Elements

	Tidal			
	Limit			
GNIS_NAME	(mi)	Remark		
Chowan R	50			
Tar-Pamlico R	59			
Neuse R	59			
Cape Fear R	65	Lock #1		
G. Pee Dee R	33			
Santee R	37	Santee Dam		
Cooper R	35	L. Moultrie		
Ashley R	40			
Edisto R	50			
Combahee R	37			
Savannah R	59			
Black R	40			
Waccamaw R	60			
Roanoke R	6			

1D Modeling Considerations

Model Results: Superstorm Sandy 2012

Model Results: Superstorm Sandy 2012 (cont'd)

Atmospheric pressure Water level

Model Results: Hurricane Isabel 2003

Atmospheric pressure Water level 10

Model Summary

Results

- 1D/2D hydrodynamic coupling was more robust, resulting in more accurate simulation of water levels in bay and tributaries than the Local Scale Model
- Water level were generally accurate; the model can capture the peaks, especially for Isabel and Irene
- Hydrodynamic predictions are dependent on atmospheric forcing

Challenges / Lessons Learned

- Input uncertainties/errors (e.g., bathymetry, wind, cross-section profiles, NWM discharges)
- High resolution topo-bathymetry data is required to capture correct channel geometry
- Spatial variability of roughness needs to be optimized

Questions

Questions?

Thank you