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1. Introduction 

 An unseasonably strong late season winter storm impacted northern and central NV 

on 14-16 April 2009.  This major storm brought heavy snow accumulations (Fig. 1), 

strong winds, and blowing and drifting snow to much of northern NV. For the period of 

15-16 April, Eureka, NV, storm total snowfall was 26 inches. This ranked as Eureka’s 

second highest two-day snowfall accumulation ever recorded.  Further north in Lamoille, 

NV, the two-day snowfall total of 21 inches ranked as the all-time highest.   

 As mentioned, heavy snow combined with strong winds during this event.  Spotters 

living in Austin and Eureka reported snow drifts over three feet high. National Weather 

Service (NWS) personnel also reported two to three feet of snow accumulation in the 

Eureka area with higher drifts (Fig. 2). Due to the impact of this storm, the main 

motivation for this paper will be to aid operational forecasters in the diagnoses of future, 

similar winter storms impacting northern NV. 

 

2. Data and Methodology 

All model data was archived at the NWS Weather Forecast Office (WFO) in Elko, 

NV. The Weather Event Simulator (WES) was used to view the data. Snowfall data were 

collected using NWS trained cooperative observers, as well as the Snowpack Telemetry 

(SNOTEL) observation sites that are managed and funded by the National Resources 

Conservation Service (NRCS). Rainfall/snow-water equivalent measurements were taken 
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from Automated Surface Observing System (ASOS) and Automated Weather Observing 

System (AWOS) observations from local airports in the County Warning Area (CWA). 

Standardized climatological anomalies were computed using data from a 30-year 

climatology (1971-2000) and the NCEP-NCAR global reanalysis data (Graham and 

Grumm, 2010).  

 

3. Synoptic Overview 

The upper level pattern leading up to the 14-16 April storm included a broad 

trough over the Gulf of AK, an upper low slowly exiting the Desert Southwest, and weak 

ridging over the western United States.  This Gulf of AK trough then drifted east and 

closed off over Vancouver Island, BC by 0000 UTC on 14 April. An upper jet located 

southeast of this upper low was depicted by the GFS analysis at 1200 UTC. This jet had a 

maximum wind speed of 51 m s-1 (99 knots) at 300 hPa and extended from northern CA 

to western MT. The upper low moved southward across the Pacific Northwest and into 

northeastern CA/northwestern NV by 0000 UTC15 April (Fig. 3).The system’s 500 hPa 

geopotential heights were at a minimum at this time, being around 5400 meters before 

drifting southeast into south-central NV. The low then slowly exited eastward and was 

centered over south-central UT by 1200 UTC on 16 April.  

At the surface, a stationary surface frontal boundary extended from central ID 

southwest into northern CA at 0000 UTC 14 April. The boundary had shifted 

southeastward by 1200 UTC as a cold front and extended southwestward from eastern ID 

through central NV and into southeastern CA (Fig.4). By 0000 UTC 15 April, the surface 

low had decreased to 992 hPa but was nearly stationary, continuing to remain in central 
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NV (Fig. 5). The surface low then drifted off into west-central UT by 0600 UTC 15 

April. By 1800 UTC on 15 April, the surface low was centered over eastern-central UT 

before drifting into the central Rockies for most of 16 April.  

4. Anomalies 

The standardized anomalies, as described in Graham and Grumm (2010), were the 

most significant at 250 hPa and at the surface. Table 1 indicates that the 250 hPa 

temperature anomalies (Fig. 6) and the surface mean sea-level pressure (MSLP) 

anomalies (Fig. 7) valid at 0000 UTC on 15 April were the most significant being three to 

four standard deviations (SD) above and below average, respectively. The strong 

warming at 250 hPa is indicative of a strong tropopause fold, as described in Hirschberg 

and Fritsch (1991). The return periods for both of the variables are around one month in 

the western U.S. Also, the standardized geopotential height anomaly at 500 hPa was two 

to three SD below normal (Fig 8). 

5. Tropopause Fold 

As discussed above, this event exhibited a significant tropopause fold. Research 

in the area of tropopause folds has been mainly centered upon winter storms over the 

Midwest and East Coast.  A major study completed by Uccellini, et al (1985) focused on 

the very strong President’s Day Cyclone of 18-19 February 1979.   It was noted that 12 to 

24 hours prior to the event, an upper level trough and associated strong tropopause fold 

progressed east across the mid-central U.S.  During this event, the tropopause fold was 

identified west of the winter storm, and during the ensuing interaction between the 



4 
 

tropopause fold and surface cyclone, rapid and deep cyclogenesis occurred, which 

resulted in a major winter storm.  It was summarized in the paper that the injection of 

stratospheric air into the low levels of the troposphere brought about a significant 

increase in absolute vorticity due to “adiabatic mass convergence, vertical stretching, and 

the related decrease in the static stability of the air mass originating in the stratosphere.” 

In the storm discussed in this paper, a tropopause fold was evident off the coast of 

northwest CA on the PV1.5 surface at 1200 UTC on 14 April (Fig. 9).  Meanwhile, an 

area of low pressure at the surface was stationed near south-central Nevada with a central 

pressure of 1002 hPa.  Interestingly, the distance between the two features was roughly 

500 nautical miles.  By 1800 UTC on 14 April, the tropopause fold lowered to a depth of 

707 hPa over central CA, while the surface pressure of the low deepened to 997 hPa and 

maintained its position across south-central NV, per the GFS analysis. The surface low 

continued its deepening through 0000 UTC on 15 April, while the tropopause fold moved 

across southern CA (Fig. 10).  The interaction between the tropopause fold and the 

developing surface low is similar to what has been documented during the President’s 

Day storm of 1979.  It is clear that strong lee-side cyclogenesis was underway across NV 

at this time as the MSLP analyses for 1200 UTC 14 April and 0000 UTC 15 April (Figs. 

4 and 5 respectively) depict a significant drop in surface pressure of 13 hPa in 12 hours.  

6. Frontogenesis 

Frontogenesis increased across NV by 0000 UTC on 15 April in association with 

the cold front. The strongest frontogenesis occurred from the surface up through 500 hPa 

according to the 20-km RUC analysis (Figs. 11 and 12). The RUC analyses were used 
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because of the higher temporal resolution compared to the 40-km GFS. The RUC showed 

frontogenesis increasing between 2000 UTC and 2300 UTC 14 April, diminishing 

overnight through 1200 UTC. Also evident in the analyses was the existence of negative 

saturated equivalent potential vorticity (EPV*) above the frontogenesis. The negative 

EPV aloft suggests there is Conditional Symmetric Instability (CSI) present, which is an 

environment that favors slantwise convection. When strong linear forcing is present in 

this environment, e.g. frontogenesis, heavy banded precipitation can form. Initially, it 

was thought that banded convection occurred around 2000 UTC in north-central NV (Fig. 

13). However, from tracking the origin of the reflectivity and verifying with satellite 

imagery, it was determined that the bands were the result of chaff being released from 

military aircraft. Authentic banding did occur overnight in the Eureka, NV area, however. 

This banding is evident at the southeastern edge of the KLRX radar coverage area at 

1000 UTC 15 April (Fig. 14). 

One aspect the authors chose to examine was the depth of the dendritic growth 

zone (DGZ) and the relationship to strong upward vertical velocities. The depth of the 

DGZ was over one km in the vicinity of the frontal boundary. It is believed that the co-

location of a thick DGZ and strong frontogenetical forcing led to enhanced snowfall 

across the area. Frontal broadening of the DGZ can be expected with most cold fronts. As 

the lower part of the front approaches, the isotherms closer to the ground (-12C) descend 

toward the surface, while the upper part (-18C) remains unchanged. Hence, the -12 to -

18C layer becomes deeper with the approach of the front. Theoretically, a strong front 

with less vertical slope (the surface front well out ahead of the mid-level front) would 

have a deeper DGZ. However, the deeper the DGZ, the more stable the profile would be. 
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Essentially, conditions that favor a high dendritic snow growth rate include high values of 

omega in a deep DGZ. The use of omega and temperatures to diagnose when the best 

snow production will occur was described in Cobb and Waldstreicher (2005). Four panel 

images of the DGZ depth, frontogenesis in the -18 to -12 C layer, omega in the -18 to -12 

C layer, and relative humidity in the -18 to -12 C layer from the RUC analyses (Figs. 15-

17) show that there was a large area of deep DGZ depth in close proximity to the 

frontogenesis. The DGZ depth was over 1.3 km and was as high as 1.8 km according to 

the RUC. This was combined with frontogenesis between 200 and 500 units (K/m/1e10s) 

within that same layer (-18 to -12C layer). Frontogenesis decreased quickly after 1200 

UTC 15 April. 

Most of the precipitation associated with the frontogenesis fell during the early 

morning hours of the 15th. According to precipitation totals from the Eureka COOP 

observer valid on the 15th of April, Eureka received 16 inches of snow with 1.25” of 

water equivalent. The airport (KP68) is eight nautical miles NNE of the city of Eureka 

and received 0.73” of water equivalent precipitation.  

7. Prolonged Isentropic Lift 

 The second significant period of snowfall for Eureka occurred on the night of 15 

April.  As the upper low pushed east across central NV and into UT, “wrap-around 

precipitation” began as a plume of moisture wrapped northwestward around the low 

pressure system. Examining pressure and wind on the 295 K isentropic surface from the 

RUC analyses (Fig. 18) reveals that strong isentropic lift occurred on the night of the 15th 

(0500 to 1100 UTC 16 April).   
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A weak trough of warm air aloft (trowal) also is evident in the model analyses, 

particularly on 16 April (Fig. 19). As noted in Martin (1998), precipitation on the back 

side of a low pressure system often occurs in the vicinity of the trowal. This ridge of 

higher equivalent potential temperature signifies a higher moisture/temperature air stream 

that ascends as it gets “wrapped around” the back side of a low pressure system. Often 

frontogenesis is co-located with this air stream that is a maximum of saturated equivalent 

potential temperature. 

8.  Orographic Enhancement of Snow  

Vertical motion influence by terrain played a significant role in the spatial 

distribution of snowfall in this event. The cold front moved southeast across NV from the 

afternoon on the 14th through the early morning hours of the 15th. During this time, strong 

southeasterly isentropic lift was occurring aloft as warm air was pushing northward ahead 

of the main upper level low. Thus, a broad area of upward motion was occurring during 

and after the cold frontal passage. As the snow descended into the lowest one km of the 

atmosphere, it encountered either enhanced snow growth in the upslope regions of the 

terrain or inhibited snow growth and sublimation in the downslope regions of the terrain. 

Figure 20 shows the NAM12 sounding for the Eureka, NV airport (KP68) valid 1200 

UTC 15 April. A close examination of the sounding and the local terrain reveals that the 

inversion base is around 0.5 km above the peaks of the mountain ranges. The close 

proximity of the inversion to the mountain barriers likely led to strong mountain wave 

action, which led to a significant snowfall increase in the upslope regions and decrease in 

the downslope regions. The cold frontal inversion was in place until around 1800 UTC on 
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the 15th. From 1800 UTC on the 15th through the morning of the 16th, the profile was 

nearly moist adiabatic from the surface to around 450 hPa with northerly flow throughout 

the entire profile.  

The most significant contributor to the enhanced snowfall at Eureka and Lamoille, 

NV, was the prolonged period of upslope snow enhancement. Eureka, NV lies at the 

intersection of the Diamond Mountains and the Fish Creek Range. The terrain favors 

enhanced convergence and upslope in north-northwesterly flow as Eureka lies in a 

“horseshoe” or u-shaped valley with mountains to the east, south, and west. The 

Moderate Resolution Imaging Spectroradiometer (MODIS) imagery reveals that, one day 

after the event, the snowfall had melted considerably in the April sun and was 

significantly limited to the north-facing slopes and higher terrain (Fig. 21). A closer look 

at the MODIS imagery (Fig. 22) shows that indeed the northwest facing slopes received 

the most snowfall. This was confirmed by observations from Elko, NV (non-upslope area 

- 8.3”) and Spring Creek and Lamoille, NV (upslope areas – 23” and 21”, respectively).  

9.  Observations and Summary 

The winter storm of April 15-16th 2009 resulted in the highest two-day snowfall 

total recorded for Lamoille, NV and the second for Eureka, NV. Impacts included power 

outages in the Eureka, NV area, and 23 motor vehicle accidents reported by the Nevada 

Highway Patrol.  

The significant meteorological features that accompanied this event include: 
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1. Strong upper level temperature and MSLP anomalies (return intervals of 1 per 

month) 

2. Strong tropopause fold (PV1.5 surface extended down to near 700 hPa) 

3. Rapid surface cyclogenesis  

4. Strong frontogenesis combined with negative EPV* aloft and a deep DGZ 

5. Prolonged mid-level isentropic lift ahead of the low and later in the event 

associated with the trowal 

6. Prolonged period of upslope enhancement for north facing slopes 
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