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1. Introduction 
Operational Numerical Weather Prediction (NWP) models have inherent biases that need 
to be removed either objectively or subjectively before used in official National Weather 
Service (NWS) forecasts. The recent shift of the NWS to the Interactive Forecast 
Preparation System (IFPS) to create and distribute digital weather forecasts has led to 
more of a dependency on the direct use of NWP models. This dependency on raw model 
output is mainly due to the gridded format needed to initialize digital weather forecasts. 
The primary tool for creating these digital forecasts is the Graphical Forecast Editor 
(GFE) (Lefebvre, 1995). The GFE has two design features that account for the objective 
and subjective adjustments of the native NWP model grid. The front-end feature is 
referred to as “Smart Initialization” which is used to objectively derive sensible weather 
elements and downscale the coarser resolution models to a higher 2.5 km or 5 km grid 
spacing. The second feature is interactive and accounts for both subjective and objective 
adjustments through the use of simple graphical editing tools and “Smart Tools”. 
 
The baseline GFE design lacks the capability to objectively remove model biases in the 
initialization process. This is not to say that the GFE should have this capability, but high 
resolution, bias-corrected model grids are not currently included in the overall IFPS 
design. As a result, forecasters are tasked with subjectively correcting for these model 
biases using the GFE tools. Mass (2003) pointed out that this is a poor use of human 
resources when an objective bias removal technique would likely produce better results 
than any subjective attempt. Although some manual adjustments may always be required 
by a forecaster, most of the bias removal can be accomplished in the initialization or 
model post-processing stages of the IFPS.   
 
The need for bias corrections arises from the many sources of systematic errors in NWP 
modeling systems. Over the past 30 years, the Model Output Statistics (MOS) approach 
(Glahn and Lowry, 1972) has been successfully used to improve upon model output 
through bias removal and statistical correction for selected sites. One drawback of MOS 
is that it requires a long training period of archived model fields from an unchanged or 
static model. Today, modeling centers make frequent changes to numerical procedures, 
physics, and resolution of NWP models.  To overcome this ever-changing model base, 
other techniques more dynamic in nature are being investigated.  Wilson and Vallèe 
(2002) describe an updateable MOS system used in Canada which was specifically 
designed to adapt to model changes. Mao et al. (1999) developed a similar technique that 
updated daily and relied on only the most recent 2 to 4 weeks of model and observational 
data.   
 



Stensrud and Skindlov (1996) showed that a much simpler method of using a 7-day 
running mean bias correction could improve upon model grid-point forecasts of 
maximum temperature. Recently, Steed and Mass (2004) experimented with several 
different spatial techniques of applying bias removal to forecasts of temperature from a 
mesoscale model. For a couple of these methods they utilized different interpolation 
techniques to distribute bias calculations at verifying stations on the model grid. Another 
method applied a simple domain average from observed biases at all verifying sites. They 
also looked at a removal technique which used the Rapid Update Cycle (RUC) initial 
analysis as ground truth for calculating model biases at each grid-point. Their results 
indicated that each removal method performed nearly equally as well as the others during 
the winter months of 2003 to 2004 in the Pacific Northwest. They also found that a 
removal method using a 2-week running bias had the least amount of error compared to 
periods of 1, 3, 4 and 6 weeks.  
 
In addition to correcting for model biases, the nature of weather prediction entails 
uncertainties that forecasters subjectively account for when making a deterministic 
forecast of sensible weather. Several studies have shown that averaging two or more 
different numerical forecasts to produce a consensus is more accurate in the long run than 
a single forecast (Verret and Yacowar, 1989, Vislocky and Fritsch, 1995). Furthermore, 
Etherton (2003) demonstrated the usefulness of combining MOS and bias-corrected 
model output from a short-range NWP ensemble using a weighted average. Stensrud and 
Yussouf (2003) also found that the simple mean of bias-corrected 2-meter temperatures 
from a 23 member multimodel ensemble was as accurate as the Nested Grid Model 
(NGM) MOS for sites in New England.  
 
Stensrud and Yussouf (2003) also demonstrated the added value to users when using 
ensemble probabilities in a simple cost-loss model; thus, pointing out the advantage of 
using multiple guidance sources over a single forecast. Considerable information can be 
extracted from all the guidance sources to measure forecast uncertainties. Summary 
products similar to that of traditional NWP ensemble systems can be produced in the 
form of a mean, standard deviation, range, and extremes as well as raw or calibrated 
probabilities for various thresholds or categories. This extra information can be used 
directly in an automated probabilistic forecast system or as objective guidance in the 
IFPS forecasting process.   
 
This paper describes an approach being explored to improve first-guess grids of 
maximum and minimum temperatures using the GFE which can be transferred to other 
elements. The method attempts to incorporate both aspects of bias removal and forecast 
uncertainty.  The technique uses a simple 7-day running mean error correction and a 
lagged ensemble of bias-corrected and gridded station MOS to create a blended forecast. 
The Global Forecast System (GFS) and Eta models along with their associated MOS 
forecasts are used in this study. The premise of the approach is that a consensus or 
blended forecast from two or more different bias-corrected guidance sources is more 
skillful than a single guidance product.  Preliminary results are examined for the 
feasibility and usefulness of the constructed error feedback and blending system in short-
range prediction.   



2. Methodology  
The flexible configuration design of the GFE allows for the expansion of mutable 
databases and rapid prototyping through the use of the Python scripting language. These 
features make the GFE ideal for the construction of the error feedback and forecast 
blending system used in this study. The server software for the GFE stores and manages 
the different models that comprise the ensemble of grids used in the consensus forecasts. 
GFE procedures written in Python calculate the model forecast errors used in the bias 
corrections and derive the consensus forecasts of maximum and minimum temperatures 
based on each model’s past performance. In addition to the consensus forecast, ensemble 
style products such as the arithmetic mean, range, spread, and extreme grids as well as 
raw probabilities for thresholds are calculated. The schematic for the modified GFE 
configuration is shown in Figure 1. 
 
2.1 Initialization    
The first step in the process uses the GFE “Smart Initialization” to downscale the coarser 
model resolutions to a grid spacing of 2.5 km or 5 km. For temperature, a high resolution 
terrain dataset is used to adjust model lapse rates based on elevation. This results in a 
more detailed temperature grid that follows closely the topography. There is no attempt to 
objectively add value to the raw model output in this downscaling step. The maximum 
and minimum temperatures are derived from the hourly temperatures at model time steps 
of usually 3 or 6 hours. LeFebvre et al. (2002) provides a more comprehensive 
description of the GFE initialization algorithms.  
 
2.2 MOS Adjustments    
After the models have been downscaled to the IFPS resolution, MOS point forecasts for 
both the GFS and Eta are interpolated on a grid using a popular collection of GFE tools 
called “MatchGuidance” (Barker, 2004). These tools decode the MOS bulletins and run 
an objective analysis which uses the downscaled model grids as a first-guess field. 
Corrections are applied to the first-guess field so that the MOS values match at specified 
grid-points. The final product used is the MOS-adjusted grids of maximum and minimum 
temperatures.    
 
2.3 Storage of Model Grids and Forecast Errors    
Following the downscaling and MOS adjustments, the gridded forecasts are archived in 
separate model databases with elements stored by cycle and projection times. The model 
cycles valid at 0000, 0600, 1200, and 1800 UTC are archived. The temperature elements 
are stored at projection times of same day (Day+0), next day (Day+1), second day 
(Day+2), and in some cases for the third day (Day+3). For the Eta MOS-adjusted grids, 
only the 0000 and 1200 UTC model cycles are available.  
 
The performance of the forecasts can be evaluated based on the “Record of Analysis” 
once the grids have been archived. For this study, another popular GFE tool called 
“MatchObsAll” (Barker, 2004) is used for the “Record of Analysis”. The tool extracts 
hourly temperature observations from various sources and runs the same objective 
analysis used in the MOS adjustments. The background field for the analysis is an 
average of the Eta model forecast and the analysis from the previous hour. The initial 



“Record of Analysis” for maximum and minimum temperatures is derived from the 
analysis of hourly temperatures. An additional adjustment is made to these initial analysis 
grids by re-running the objective analysis using observed values at cooperative observer 
sites (COOP) taken from the Regional Temperature and Precipitation (RTP) summaries. 
This final adjustment results in the nearest grid-point to the COOP station matching the 
observed value. The “Record of Analysis” is considered ground truth and forms the basis 
for the model forecast error calculations. The forecast errors are stored by model cycle 
and projection time for at least 7 days and are used in the bias calculations.       
 
2.4 Bias Removal   
A period of 7 days is used to calculate the running bias at each grid-point to be applied to 
the downscaled NWP model output. No attempt is made to compare the performance of 
the 7-day running bias to shorter or longer periods. The 7-day period is assumed to be 
enough time to capture a useful model bias and short enough to respond quickly to 
changes in the model and/or GFE initialization algorithm.  In addition to model and 
initialization changes, a 7-day period is expected to adapt more rapidly to transitioning 
weather regimes in comparison to a longer period of 2 weeks or 1 month.  
 
After the model has been downscaled to the IFPS resolution, the 7-day running mean 
error is calculated based on the model cycle and forecast times. Figure 2 shows how the 
magnitude of the forecast error can change by cycle and projection times. The running 
bias is applied to the model output at individual forecast times out to two days (Day+2) 
and in some cases to the third day (Day+3).  As a result, each model run and lead time 
will have a unique bias value which is subtracted from the model grid. Further, each grid-
point will have a unique bias value as well.  
 
2.5 Consensus Forecasts and Summary Grids  
The approach used in this study incorporates two different but valid bias removal 
methods (mean error-correction and MOS) taken from the same model to construct an 
ensemble of forecasts. Both the GFS and Eta bias-corrected and MOS-adjusted grids are 
used for the consensus forecasts of maximum and minimum temperatures. The consensus 
forecast is fed back into the system and treated as an additional model. To increase the 
number of forecasts without adding more models, a lagged system is constructed by using 
previous model forecasts all valid at the same verification time. Figure 3 illustrates the 
layout of the time-lagged model grids.  
 
The consensus forecast of maximum and minimum temperatures is a weighted average of 
all forecasts based on each model’s past performance. There is a wide range of methods, 
such as linear regression, gradient descent, partial least squares, and fuzzy logic, that can 
be used to determine the blending weights for each model. However, for this initial step, 
a simple weighting scheme is used. A 7-day running Mean Absolute Error (MAE) for 
each model cycle and forecast time is calculated, and a relative weight is given to each 
forecast based of the linear weighting function shown in figure 4. A fixed relative weight 
of .70 is applied to the most recent model cycle based on the premise that the latest 
forecast is more skillful than the older ones.   
 



To show forecast uncertainty and identify errors in the feedback and blending system, 
grids similar to that of a traditional NWP ensemble prediction system are prepared. The 
simple arithmetic mean is calculated which can also exhibit predictive skill in the long 
run. The spread about the mean is also made available, providing some insight into 
forecast uncertainties and analysis errors propagating through the system. For example, 
Figure 5 shows a large spread in the region of the Grand Canyon which can be tied to bad 
data in the objective analysis of observed high temperatures. Along with the spread, high 
and low extreme grids as well as the range are generated to provide additional 
information on the variability of the solutions. As a final advantage of using multiple 
forecasts, raw probabilities for exceeding temperature thresholds are computed. However, 
there is currently no attempt to calibrate or determine the reliability of these probabilistic 
forecasts.  
 
3. Preliminary Results  
To look at the feasibility and usefulness of the bias removal and model blending methods, 
the performance of both need to be evaluated and compared to a benchmark. For the 
purpose of this study, three main questions are investigated: (1) Will a simple bias 
removal technique improve upon direct model output? (2) Will a weighted consensus 
forecast from multiple guidance sources be more accurate than a single forecast? (3) How 
do both methods compare to MOS forecasts?  
 
To answer these questions and simplify the process, a point-based approach is used 
instead of a grid-based approach to validate the methodologies. The forecast domain 
covers most of Arizona into parts of southeast California and extreme western New 
Mexico. Thirteen sites ranging in elevation from 59 feet below Mean Sea Level (MSL) to 
7, 078 feet MSL are used in the validation dataset. Each site corresponds to the nearest 
grid-point of a GFS and Eta MOS station. Figure 6 shows the forecast domain and 
locations of the 13 sites overlaid on the IFPS 2.5 km resolution terrain. The same 
objective analysis used for the “Record of Analysis” and the gridded station MOS insures 
that observed temperatures are in sync at grid-points with the MOS bulletins. Since the 
Eta MOS is only available for two of the four model cycles, the 1200 and 0000 UTC runs 
are used. Forecasts of maximum and minimum temperatures at lead times valid for the 
next day (Day+1) and second day (Day+2) during the months of May through July 2004 
are evaluated.  
 
3.1 Bias-Corrected Forecasts 
Preliminary results indicate that the bias-corrected forecasts of maximum and minimum 
temperatures have smaller Mean Absolute Error (MAE) values for all sites than those 
produced by the GFS and Eta direct model output. The percentage of improvement by the 
bias-corrected forecasts over the direct model output as measured in terms of the MAE is 
given by: 
   

Improvement(%) = ((MAEraw – MAEbias) / MAEraw)    X 100, 
 
Where MAEraw is the MAE for the direct or raw model output and MAEbias represents the 
bias-corrected values. For the 13 sites, the bias-corrected forecasts show improvement 



over the direct output for both the GFS and Eta models. In general, results show over a 50 
percent improvement at most sites. The only exception to this is for maximum 
temperature forecasts from the Eta model in which a less than 40 percent improvement is 
achieved. This lower percentage for the Eta model might suggest that the simple bias 
removal technique is less useful as the direct model output becomes more accurate. The 
highest percentage of improvement is at stations above 5,000 feet. For example, the 0000 
UTC bias corrections for maximum temperatures at Flagstaff, Arizona (~7,000 feet) 
show a 73 percent improvement over the raw output for the GFS and 80 percent for the 
Eta model. Table 1 shows the average MAE values in degrees Fahrenheit (F) and average 
percentage of improvement taken from all 13 sites.   
 
3.2 Bias-corrected forecasts vs. MOS 
The bias-corrected forecasts for maximum temperature compared to MOS show mixed 
results. The GFS bias-corrected MAE is slightly lower than the GFS MOS for the 1200 
UTC cycle at both lead times. Otherwise, the MOS MAE values for maximum 
temperature are lower than the bias removed forecasts. In the case of minimum 
temperatures, MOS has lower MAE values than the bias-corrected forecasts for most of 
the sites in the study. Table 2 shows the average MAE values for the MOS and bias-
corrected forecasts for both model cycles at lead times of Day+1 and Day+2.  
 
One thing to take into account when interpreting these results is the issue of comparing a 
model grid-box average forecast with a point forecast such as MOS. In the case of this 
point-based evaluation, the results may favor MOS. Nonetheless, the preliminary results 
are encouraging when considering the dynamic nature of NWP models today. The 
significant time lag between a new or changed NWP model and the availability of the 
associated MOS product is typically a few years. Given this perspective, the bias-
corrected forecasts for maximum temperature compare favorably with both the GFS and 
Eta MOS. Although the bias removal method for minimum temperatures improves upon 
the direct model output, the technique does not provide desirable results when compared 
to MOS.  
 
3.3 Model Consensus Forecasts 
The preliminary results for the consensus forecasts are promising for the maximum 
temperatures. Both the 0000 and 1200 UTC consensus forecasts valid at Day+1 and 
Day+2 have lower MAE values than the bias-corrected and MOS forecasts. However, the 
minimum temperature consensus forecasts show no improvement over the individual 
forecasts. In some cases, the consensus minimum temperatures exhibit higher MAE 
values than both the bias-corrected and MOS forecasts. Refer to Table 2 for the average 
MAE value comparisons.  
 
4. Summary  
An approach for improving maximum and minimum temperature forecasts is being 
explored using the capabilities of the GFE. The method is based on a simple bias removal 
technique and a weighted consensus forecast from multiple guidance sources. For a 3 
month period from May through July 2004, preliminary results suggest that significant 
improvements to the GFS and Eta direct model output can be achieved using a simple     



7-day running bias correction. Further, results show that a weighted consensus forecast is 
on average as good as or better than a single guidance forecast for maximum 
temperatures. Little or no improvement in accuracy is achieved for consensus forecasts of 
minimum temperatures. 
 
Although an error feedback and blending system is not a new concept or practice, more 
work needs to be done before conclusions on the usefulness of this approach can be 
made. However, the study points out the feasibility of the bias removal method to 
improve upon first-guess grids of maximum and minimum temperatures in the GFE. The 
study also demonstrates the potential flexibility of the design to adapt to model and 
algorithm changes as well as handling the addition of new models and/or an improved 
“Record of Analysis”.  
 
Future work will focus on adding the RUC model to the ensemble of forecasts and 
expanding the number of core elements to temperature, dewpoint temperature, sky cover, 
and probability of precipitation. A more sophisticated method of determining the weights 
of each model for the consensus forecasts will be explored. Work on calibrating and 
validating the reliability of the probabilistic forecasts derived from the time-lagged 
multiple guidance sources is also planned.   
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7. Figures  
 
 

 
 
Figure 1.  Schematic showing the modified GFE configuration for the error feedback and 
blending methods used in this study. 
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Figure 2. Shows the magnitude of change in forecast error by model cycle and projection 
time at Flagstaff, Arizona for MaxT. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Illustrates the lagged model grids used in the consensus forecasts. In the 
current configuration for same day forecasts (Day+0) at certain model cycles, over 70 
members can be available for blending.  
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Figure 4. Shows the relative weights given to each model as a function of a 7-Day 
running MAE.  
 
 

 
Figure 5.  Shows an area of large spread about the ensemble mean in the Grand Canyon 
region of northern Arizona. The large spread is mainly tied to bad observed data in the 
objective analysis in which model biases are derived. These analysis errors can propagate 
through the forecast system. 
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Figure 6. Locations of the 13 sites used in the validation.  
 
8. Tables  
 
                Cycle    Lead           GFS     GFS       %            Eta       Eta       % 
Element  (UTC)  (Day+)        RAW    Bias    Imprv       RAW    Bias   Imprv  
Max T       00          1                  7.40     2.45       67           4.64     1.98       57 
Max T       00          2                  6.41     2.02       68           3.51     2.22       37 
Max T       12          1                  6.41     1.98       69           3.48     2.15       38 
Max T       12          2                  6.08     2.35       61           3.59     2.33       35 
Min T        00          1                12.82     4.84       62           9.82     3.27       67 
Min T        00          2                11.67     4.49       62         10.05     3.57       64 
Min T        12          1                12.92     5.25       59           9.81     3.36       66 
Min T        12          2                13.22     5.06       62         10.28     3.54       66 
 
Table 1.  MAE values in degrees F. Percentage of improvement (%Imprv) for the bias- 
corrected over the raw model output. The Bias label is for the bias-corrected forecasts 
and RAW label represents the downscaled direct model output.  
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                Cycle    Lead           GFS            GFS             Eta           Eta         Model 
Element  (UTC)  (Day+)      Bias-COR    MOS       Bias-COR    MOS    Consensus 
Max T        00          1                2.45            2.11            1.98           1.94          1.87    
Max T        00          2                2.02            2.15            2.22           2.04          1.82 
Max T        12          1                1.98            2.17            2.15           1.97          1.78 
Max T        12          2                2.35            2.46            2.33           2.12          2.10 
Min T         00         1                4.84             2.77           3.27            2.74         3.32 
Min T         00         2                4.49             3.16           3.57            2.97         3.78 
Min T         12         1                5.25             3.03           3.36            2.51         3.16 
Min T         12         2                5.06             2.98           3.54            2.84         3.52    
 
Table 2. MAE values in degrees F for forecasts averaged from all 13 stations studied.  
The label Bias-COR represents the bias-corrected forecast. 


