
Western Region Technical Attachment 
No. 91-25 

June 25, 1991 

PARALLEL PROCESSING IN 
FORECAST SYSTEMS LABORATORY (FSL) 

[Editor's Note: This Technical Attachment (TA) was originally printed in the June 1991 
issue of FSL Forum. The authors, Bernardo Rodriguez and Roldan Pozo, are graduate 
students at the University of Colorado Department of Engineering and Computer Sciences. 
They have served as consultants for FSL.] 

Because of technological advances mostly related to 
circuit integration and materials, the speed of computers 
has increased rapidly in the last 30 years. There has been 2 

decrease in the supercomputer cycle time from 100 nsec in 
the CDC 66(fJ in 1964, to 27.5 nsec in the CEDC 6700 in 
1969, to 12.5 nsec in the Cray-1 in 1976, to 4 nsec in the 
Cray-2 in 1985, and there is a projected decrease to the.2-
to 3-nsec range in the next generation of machines (i.e. 
Cray-3, Horizon). However, this increase in processor 
speed is not expected to continue for long: during the 15-
year period from 1955 to 1970, cycle times improved by a 
factor of 436; recently, the trend is a two-fold improve
ment every 4 to 5 years. 1be main limits to faster technol
ogy are that information can not travel faster than the 
speed of light, and that processors can not be made 
infmitely small. These limits should be reached within the 
next 20 years. 

Parallel processing has been used to funher increase 
computational speed. Instead of executing a single 
operation at a time, several operations that form part of the 
same problemare executed simultaneously. For example, a 
vector swn of length 10,000 should take approximatefy 40 
microseconds on a Cray-2 processor. If we use 10 of those 
processors, and give a vector oflength 1000 to each, the 
swn will then take approximately 4 microseconds. There 
are, however, overheads in distributing the work to all the 
processors and in synchronizing them. Therefore, one 
should not expect to achieve an N-fold improvement over 
a single processor implementation when using N proces
sors. The measure of this improvement is called the 
speed-up of the parallel program. 

Currently, there are two styles of parallel computers: those 
that use a few of the most -powerful processors available, 
and those that use many small processors. Generally the 
flrst type is based on vector processors that are especially 
designed to perform vector operations, and are connected 

through simple bus architectures: Cray Y-MP, IBM 3090, 
Fujitsu VP, NEC SX-3. The ~ond type is based on 
small, inexpensive processors, generally connected 
through more complex netv.-orlcs: Intel IPSC/860, Alliant 
FX/2800, Meiko, Ncube. A measure of the maxirnwn raw 
power of.a computing plarform (usually stated in 
MH..OPS: millions of floating point operations per 
second) could be calculated by simply multiplying the 
speed of a processor (S) times the number of those 
prcY'...essors in the system (N), 1vfFLOPS = S*N. Tradition
ally there has been the question of whether to increase S or 
N in order to make a more powerful computer. It is 
generally accapted that increasing the speed of a processor 
is more expensive than increasing the nwnber of them. 
However, it is also accepted that it is more efficient 

(higher speed-up) for general computing to use fewer 
processors. 1be programming and optimization (search 
for high speed-ups) for ea:h type of machine is quite 
different in a computer with few processors. the emphasis 
is put in the optimization of code according to the indi
vidual processor/memory architecture, since the communi-

i :; =:rsth~~ ~~~=:v~. ~ns~:~:~ with 

restructured according to the interconnection network 
. topology. 

iWe believe that in the future the leading supercomputers 
·~will have many processors. The limit to processor speed 
will be reached, and the only choice for building faster 
machines will be to increase the number of processors, 
·even up to thousands of processors, an approach usually 

· known as massively parallel processing (MPP) .. 

FSL has st.a.rt.ed a.11 effort thaat includes the evaluation of 
MPP architectures and their applicability to weather 
mooeling. An immediate goal of this work is the use of a 
mooerately parallel computer whose architecture will be 

_similar to future massively parallel computers, and 



-therefore will allow FSL to make the first steps in code 
production and algorithm optimization. For the past ye:JI 
we have been trying to determine what that architecture 
would be. 

Three architectures have been snidied: single instruction 
multiple data (SIMD), shared memory multiple instruction 
multiple data (shared NITMD), a:nd distnbuted memory 
multiple instruction multiple data (distributed memory 
:MIMD). Curre.nt SIMD architectures (Thinking Machines 
CM-2) have thousands of processors that during execution 
perfonn the same operation over different data (data 
parallelism). These machines are very scalable and their 
price/performance ratio is excell~nl. Difficulties include 
computations such as those for microphysics in atmo
spheric models, which are only necessary over a small 
portion of space. Since every processor must perform the 
same instruction, most of the processors cou:Jd be idle 
while the rest do microphysics calculations. 

MIMD coinput.er5 can also have many processors. Gener
ally they are more powerful than those used for SIMD 
machines, and the hardware to connect them is more 
expensive. In a 1vfiMD machine each processor executes 
its own program, MIMD computers have a wider range of 
applications because they can exploit both data and 
functional parallelism: processors can work on different/ 
same data structures, executing different/same functions . 
on them. In an M1MD architecture, information can be 
shared between processors by using a c.ommon memory 
space (shared memory) or by passing messages between 
them containing the informat.ion that is needed (distributed 
memory). Shared memory machines are easier to 
program but they do not grow in number of p~essors as 
natur.i.lly as distributed memory computers; smce the 
intertonneetion network is much more expensive. For 
this reason, computer scien'tist.S agree that by allowing a 
higher degree of parallelism, the maxiinum perfo~ce 
on MIMD architectures will be reached through distnb
uted memory systems. Although the original effort in 
programming and optimizing applications in distributed 
memory MIMD supercomputers is considerable, by 
dedicating resources and scientists to the stUdy of the 
implementation of atmospheric modelin_g an~ other . 
algorithms on those architectureS, we will gam expenence 
in using the computing environments that will lead to 
high performance in weather forecast applications. 

Our researrch is concentrated in two areas: the optimiza
tion of atmospheric modeling code at the system level and 
at the processor level. The former is mainly related to the 
iSsue of dynamic load balancing (making sure at run time 
that high utilization of the machine is maintained). The 
latter is concerned with the code restructuring techniques 
and memory mapping schemes that better utilize the 
individu8.1 procesSors; We are interacting-with different 
computer manufacturerS (Intel, Ncube, Meiko, Alliant., 
Thinking Machines), compiler designers (The Portland 
Group, Kuck and Associates), and University groups 
(University of Colorado, University of illinois, Stanford 
University), to guarantee that FSL will be a leader in 
parallel processing for atmospheric modeling. 


