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Introduction

Low-level wind shear (LLWS) is one of the most dangerous hazards to aviation. Historically,
it has also been one of the most difficult to forecast. This has been due in large part to the
limited capabilities of operational observation systems. Traditional methods for detecting
LLWS (rawinsondes, pibals, PIREPs, and surface observations) present obvious limitations of
spatial and temporal continuity. The National Weather Service WSR-88D Doppler radar
provides supplemental data which in part compensates for these limitations. WSR-88D
velocity products permit a comprehensive assessment of LLWS. The following is a
demonstration of WSR-88D LLWS detection along a thermal trough moving through
southwest Idaho on July 9, 1994.

LLWS Defined

As defined by the National Weather Service Training Center, LLWS is "a change in the vector
wind field in any direction in space, e.g., along an aircraft flight path, and between the surface
and 2,000 feet above ground level (AGL)." While this definition does not address the varying
degrees of LLWS, it is adequate for demonstrating WSR-88D LLWS detection.

Thermal Trough Defined

The typical thermal trough is an elongated area of low pressure that develops at the surface
in response to strong diabatic heating (Fig. 1a). It typically resides just upstream of the 500
mb ridge where diabatic surface heating is typically strong. In the northern intermountain
region, its movement is generally from west to east, following the 500 mb ridge.

Many features of the thermal trough resemble those of the cold front. Convergence at low
levels results in similar surface structure (Fig. 1b). Vertical structure is also similar (Fig. 1c).
However, the thermal trough is typically much shallower since it lacks the upper support
found with a cold front (Fig. 1d).

A modification of the typical wind field indicated above is observed when a thermal trough
is situated over the Snake River Valley of southwest Idaho. The northwest-southeast
alignment of the valley forces typical pre-trough southerly winds to back southeast within the
valley. Consequently, wind shear associated with the trough is enhanced as northwest winds
oppose southeast winds near the trough axis instead of south winds (Fig. le). WSR-88D
observations displaying the enhanced shear will be shown later.



Background

During the early afternoon hours of July 9, 1994, a thermal trough was poised over southwest
Idaho. Surface reports and analyses indicated that the trough was somewhere between Boise
and Mountain Home from 1800 to 2200 UTC (Fig. 2a and 2b). Better resolution of the trough
position was not possible due to the observational data void between the two sites.
Additionally, the data void prevented detection of LLWS associated with the trough. Prior
to the WSR-88D, the first report of LLWS related to this trough would have been a PIREP
following the firsthand encounter of a pilot. The WSR-88D makes it possible to detect LLWS
before it is encountered.

WSR-88D Observations

On the afternoon of July 9, 1994, WSR-88D base velocity products indicated the position of
the thermal trough over southwest Idaho. At 1747 UTC, it was just past the radar site (Fig.
3a). Review of the 1747-1913 UTC images show that its movement was southeast at 10-20 kts
(Fig. 3a-3d). A well-defined zero line (dark ring) is apparent along the outer periphery of the
orange outbound velocities in the 1913 UTC image (Fig. 3d). This line indicated the region
of zero velocities toward or away from the radar and, therefore, depicted the precise location
of the thermal trough.

WSR-88D output provided the necessary wind profile to determine the magnitude of LLWS
that accompanied the trough. At 1747 UTC, base velocity data indicated northwest surface
winds of 10-20 kts at the radar site (Fig. 3a). At the same time, velocity azimuth display
(VAD) data indicated winds of 160 degrees at 15 kts nearly 2,000 feet above the site (Fig. 4a).
Using base velocity data and the 1750 UTC Boise observation to estimate surface wind, the
1747 UTC wind profile above the radar site should have resembled Fig. 5. The change in
winds above the site resulted in a wind shear of 24 kts between the surface and 2,000 feet
AGL (Fig. 6).

VAD data indicated the length of time that LLWS occurred with the trough. According to the
1844 UTC profile, LLWS of about 24 kts continued over the site until around 1815 UTC (Fig.
4a). Subsequently, the shear gradually decreased until virtually ending around 1913 UTC
(Fig. 4b), although surface winds (from Boise observations) remained at 10 knots from 310°.
After 1913 UTC, shear continued above the site but was no longer within 2,000 feet of the
surface (Fig. 4b and 4c¢). In summary, LLWS of 24 kts lasted for about one half hour while
lesser low-level shear continued for an additional hour.

Effects of LLWS on Aircraft Performance

LLWS can result in a gain or loss of aircraft altitude within close range of the surface. An
aircraft experiencing a shift from a tailwind to a headwind gains altitude, while a shift from
a headwind to a tailwind will cause the aircraft to lose altitude (Fig. 7). Losing altitude within
2,000 feet of the ground may not allow the pilot enough time to adjust before a collision with
the surface ensues. An aircraft in descent along the route from Boise to Mountain Home on
July 9, 1994, would have experienced a shift from a headwind to a tailwind between the
surface and 2,000 feet AGL, resulting in a drop in indicated airspeed of up to 24 kts (Fig. 8).



Summary and Conclusions

The dangers of LLWS and the difficulty in forecasting it have long been evident. WSR-88D
velocity sensing technologies (nonexistent in previous operational radars) clearly increase the
ability to detect LLWS. The complement of base velocity data and velocity azimuth display
data provide the means for a detailed assessment of LLWS. Consequently, a meteorologist
can now provide a pilot with specific information regarding the location, magnitude, and
duration of LLWS before it is encountered. Traditional methods for detecting LLWS do not
permit this type of resolution. In the case of July 9, 1994, the WSR-88D provided a detailed
account of LLWS over southwest Idaho that otherwise would have gone unnoticed. The
National Weather Service WSR-88D clearly fills a void with regard to LLWS detection.
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A = The surface wind vector; 310/10 kts.

B = The wind vector at 2,000 AGL; 160/15 kts.

a = The surface wind direction; 310 degrees.
________ b = The wind direction at 2,000 AGL; 160 degrees.
V = The vector shear that would act upon an aircraft.

IVI={IBIZ + IAI? - 2IBIIAl cos(b-a)
IVI=vI57 + 107 - 2(15X10)cos(-150)
| V] =24.18 kis

V=B-A

Fig. 6

A = surface wind vector; 310/10 kts.
B =2,000"AGL wind vector, 160/15 kis.
For a = surface wind direction and
b = 2,000 AGL wind direction:
c=320"- a or 10°
d="b-140° or 20°
Xg = Bcos(d) 15cos(20
x, = Acos(c) 10cos(10
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For an aircraft flying direct from Boise to Mountain Home:
Xp = magnitude of headwind component at 2,000 AGL; +14.10 kts.

X, = magnitude of headwind component at surface; -0.85 kts.
Xp - X, = magnitude of change in headwind component from
2,000 AGL to surface; 23.95 kis.

For an aircraft in descent, flying direct from Boise to Mountain Home, the
change from a headwind at 2,000 AGL to a tailwind near the surface results in
a potential loss of indicated airspeed of approximately 24 kts.

Fig. 8



